TY - JOUR T1 - Centimeter-scale stream substratum heterogeneity and metabolic rates JF - Hydrobiologia Y1 - 2009 A1 - Wilson, K.C. A1 - W. K. Dodds KW - Dissolved oxygen KW - nutrients KW - O2 microelectrodes KW - stream KW - Substratum AB -

Spatial heterogeneity of substrata in streams may influence dissolved oxygen (O2) transport and nutrient forms. We studied the relationship between scales of substratum heterogeneity and O2. Heterogeneous systems could have greater respiration rates as a result of increased interfacial surfaces in the biogeochemically active areas between oxic and anoxic zones. We used grids with twelve 7 × 3.5 cm cells; half the cells were filled with sand and the other half with gravel to quantify the effect of centimeter-scale heterogeneity on respiration. The sand and gravel cells were arranged within the grids to give low, medium, and high heterogeneity. Grids were incubated for 15–17 days in a prairie stream, and then whole grid respiration was analyzed in closed recirculating chambers. Depth to anoxia and substratum metabolism were calculated from O2 microelectrode profiles measured in each cell of the grid and compared with data from natural stream transects from agricultural, urban, and prairie land use types. Shannon–Weaver (H′) diversity and “probability of change” indices were also used to compare heterogeneity of the grids to the natural stream transects. No significant differences were found among grid heterogeneity levels for respiration rate, but the anoxic interface was deeper in the gravel of higher heterogeneity grids, probably due to greater transport rates of O2 in the coarse-grained substratum. The H′ and probability of change indices indicated that the grids had levels of heterogeneity within the range of real streams. Grid depth to anoxia and substratum metabolism rates were similar to those found in streams, though less variable. In streams, H′ and probability of change values showed a slight difference among land use types, with some urban and agricultural sites displaying very low heterogeneity.

VL - 623 UR - https://link.springer.com/article/10.1007%2Fs10750-008-9647-y ER -