TY - JOUR T1 - A comparison of the trophic ecology of crayfish (Orconectes nais (Faxon) and Orconectes neglectus (Faxon)) and central stonerollers (Compostoma anomalum (Rafinesque)): omnivory in a tallgrass prairie stream JF - Hydrobiologia Y1 - 2001 A1 - Evans-White, M.A. A1 - W. K. Dodds A1 - Gray, L. A1 - Fritz, K.M. KW - food webs KW - gut analysis KW - Herbivory KW - omnivory KW - Stable isotopes AB - Omnivorous fish, such as the central stoneroller minnow (Campostoma anomalum(Rafinesque)), and crayfish often play important roles in the trophic dynamics of streams. The trophic role of these two omnivores has not been compared within a system even though they both consume algae, detritus and invertebrates and often co-occur in streams in the Midwestern United States. Natural abundance of 15N and 13C isotopes and a whole stream 15N-labeled ammonium chloride release were used to compare the trophic ecology of the central stoneroller minnow (Campostoma anomalum (Rafinesque)) and two species of crayfish (Orconectes neglectus (Faxon) and Orconectes nais (Faxon)) in a tallgrass prairie stream. The δ15N and δ13C values of Orconectes spp. were more similar to coarse benthic organic matter (CBOM) and filamentous green algae than to invertebrates, fine benthic organic matter (FBOM), and periphyton. Values for δ15N and δ13C in C. anomalum were more similar to grazer and collector invertebrates and filamentous green algae than to FBOM and periphyton. Results from a 15N tracer release also indicated a portion of algae and/or invertebrates were a component of nitrogen assimilated in Orconectes spp. and C. anomalum diets. Gut contents of C. anomalum were also analyzed. In contrast to stable isotope data, amorphous detritus was a significant component of C. anomalum guts, followed by diatoms and filamentous green algae. A significant percentage of invertebrate material was found in C. anomalum guts sampled in the spring. Experiments were conducted in artificial streams to determine if Orconectes spp. and C. anomalum could reduce epilithic algal biomass in small streams. Algal biomass on clay tile substrata was decreased relative to controls in artificial stream channels containing O. neglectus (3.4 fold, p=0.0002), C. anomalum (2.1 fold, p=0.0012), and both species combined (3.0 fold, p=0.0003). Results indicate that Orconectes spp. are functioning more as algal and detrital processors than as predators in Kings Creek. Isotope and gut content data show that C. anomalum includes invertebrates as well as algae and detritus in its diet. Both species have the potential to affect algal biomass and are important omnivores in the stream food web. VL - 462 ER -