TY - JOUR T1 - Productivity responses to altered rainfall patterns in a C4-dominated grassland JF - Oecologia Y1 - 2003 A1 - P. Fay A1 - Carlisle, J.D. A1 - Alan K. Knapp A1 - John M. Blair A1 - Scott. L. Collins KW - Climate change KW - Konza Prairie KW - Net primary productivity KW - Precipitation KW - soil moisture AB - Rainfall variability is a key driver of ecosystem structure and function in grasslands worldwide. Changes in rainfall patterns predicted by global climate models for the central United States are expected to cause lower and increasingly variable soil water availability, which may impact net primary production and plant species composition in native Great Plains grasslands. We experimentally altered the timing and quantity of growing season rainfall inputs by lengthening inter-rainfall dry intervals by 50%, reducing rainfall quantities by 30%, or both, compared to the ambient rainfall regime in a native tallgrass prairie ecosystem in northeastern Kansas. Over three growing seasons, increased rainfall variability caused by altered rainfall timing with no change in total rainfall quantity led to lower and more variable soil water content (0–30 cm depth), a ~10% reduction in aboveground net primary productivity (ANPP), increased root to shoot ratios, and greater canopy photon flux density at 30 cm above the soil surface. Lower total ANPP primarily resulted from reduced growth, biomass and flowering of subdominant warm-season C4 grasses while productivity of the dominant C4 grass Andropogon gerardii was relatively unresponsive. In general, vegetation responses to increased soil water content variability were at least equal to those caused by imposing a 30% reduction in rainfall quantity without altering the timing of rainfall inputs. Reduced ANPP most likely resulted from direct effects of soil moisture deficits on root activity, plant water status, and photosynthesis. Altered rainfall regimes are likely to be an important element of climate change scenarios in this grassland, and the nature of interactions with other climate change elements remains a significant challenge for predicting ecosystem responses to climate change. VL - 137 ER - TY - JOUR T1 - Nitrogen limitation in dryland ecosystems: responses to temporal and geographical variation in precipitation JF - Biogeochemistry Y1 - 1999 A1 - Hooper, D.U. A1 - Johnson, L.C. KW - arid KW - Fertilization KW - Net primary productivity KW - nitrogen limitation KW - semi-arid KW - Water availability AB - We investigated the relationship between plant nitrogen limitation and water availability in dryland ecosystems. We tested the hypothesis that at lower levels of annual precipitation, aboveground net primary productivity (ANPP) is limited primarily by water whereas at higher levels of precipitation, it is limited primarily by nitrogen. Using a literature survey of fertilization experiments in arid, semi-arid, and subhumid ecosystems, we investigated the response of ANPP to nitrogen addition as a function of variation in precipitation across geographic gradients, as well as across year-to-year variation in precipitation within sites. We used four different indices to assess the degree of N limitation: (1) Absolute Increase of plant production in response to fertilization (the slope of ANPP vs. amount of added N at different levels of annual precipitation); (2) Relative Response (the percent increase in fertilized over control ANPP at different levels of N addition); (3) Fertilizer Use Efficiency (FUE, the absolute gain in productivity per amount of fertilizer N), and (4) Maximum Response (the greatest absolute increase in ANPP at saturating levels of N addition). Relative Response to fertilization did not significantly increase with increasing precipitation either across the geographic gradient or across year-to-year variation within sites. Nor did the Maximum Response to fertilization increase with increasing precipitation across the geographic gradient. On the other hand, there was a significant increase in the Absolute Increase and FUE indices with both geographical and temporal variation in precipitation. Together, these results indicate that there is not necessarily a shift of primary limitation from water to N across the geographic water availability gradient. Instead, our results support the hypothesis of co-limitation. The apparently contradictory results from the four indices of N limitation can best be explained by an integration of plant ecophysiological, community, and ecosystem mechanisms whereby plants are co-limited by multiple resources, species shifts occur in response to changing resource levels, and nitrogen and water availability are tightly linked through biogeochemical feedbacks. VL - 46 ER -