TY - JOUR T1 - Productivity responses to altered rainfall patterns in a C4-dominated grassland JF - Oecologia Y1 - 2003 A1 - P. Fay A1 - Carlisle, J.D. A1 - Alan K. Knapp A1 - John M. Blair A1 - Scott. L. Collins KW - Climate change KW - Konza Prairie KW - Net primary productivity KW - Precipitation KW - soil moisture AB - Rainfall variability is a key driver of ecosystem structure and function in grasslands worldwide. Changes in rainfall patterns predicted by global climate models for the central United States are expected to cause lower and increasingly variable soil water availability, which may impact net primary production and plant species composition in native Great Plains grasslands. We experimentally altered the timing and quantity of growing season rainfall inputs by lengthening inter-rainfall dry intervals by 50%, reducing rainfall quantities by 30%, or both, compared to the ambient rainfall regime in a native tallgrass prairie ecosystem in northeastern Kansas. Over three growing seasons, increased rainfall variability caused by altered rainfall timing with no change in total rainfall quantity led to lower and more variable soil water content (0–30 cm depth), a ~10% reduction in aboveground net primary productivity (ANPP), increased root to shoot ratios, and greater canopy photon flux density at 30 cm above the soil surface. Lower total ANPP primarily resulted from reduced growth, biomass and flowering of subdominant warm-season C4 grasses while productivity of the dominant C4 grass Andropogon gerardii was relatively unresponsive. In general, vegetation responses to increased soil water content variability were at least equal to those caused by imposing a 30% reduction in rainfall quantity without altering the timing of rainfall inputs. Reduced ANPP most likely resulted from direct effects of soil moisture deficits on root activity, plant water status, and photosynthesis. Altered rainfall regimes are likely to be an important element of climate change scenarios in this grassland, and the nature of interactions with other climate change elements remains a significant challenge for predicting ecosystem responses to climate change. VL - 137 ER - TY - JOUR T1 - Altering rainfall timing and quantity in a mesic grassland ecosystem: Design and performance of rainfall manipulation shelters JF - Ecosystems Y1 - 2000 A1 - Fay, P.A. A1 - Carlisle, J.D. A1 - Alan K. Knapp A1 - John M. Blair A1 - Scott. L. Collins KW - Climate change KW - floristic diversity KW - Grasslands KW - Konza Prairie KW - life histories KW - long-term research KW - Net primary production KW - precipitation patterns KW - rainout shelters KW - soil moisture AB - Global climate change is predicted to alter growing season rainfall patterns, potentially reducing total amounts of growing season precipitation and redistributing rainfall into fewer but larger individual events. Such changes may affect numerous soil, plant, and ecosystem properties in grasslands and ultimately impact their productivity and biological diversity. Rainout shelters are useful tools for experimental manipulations of rainfall patterns, and permanent fixed-location shelters were established in 1997 to conduct the Rainfall Manipulation Plot study in a mesic tallgrass prairie ecosystem in northeastern Kansas. Twelve 9 x 14–m fixed-location rainfall manipulation shelters were constructed to impose factorial combinations of 30% reduced rainfall quantity and 50% greater interrainfall dry periods on 6 x 6–m plots, to examine how altered rainfall regimes may affect plant species composition, nutrient cycling, and above- and belowground plant growth dynamics. The shelters provided complete control of growing season rainfall patterns, whereas effects on photosynthetic photon flux density, nighttime net radiation, and soil temperature generally were comparable to other similar shelter designs. Soil and plant responses to the first growing season of rainfall manipulations (1998) suggested that the interval between rainfall events may be a primary driver in grassland ecosystem responses to altered rainfall patterns. Aboveground net primary productivity, soil CO2 flux, and flowering duration were reduced by the increased interrainfall intervals and were mostly unaffected by reduced rainfall quantity. The timing of rainfall events and resulting temporal patterns of soil moisture relative to critical times for microbial activity, biomass accumulation, plant life histories, and other ecological properties may regulate longer-term responses to altered rainfall patterns. VL - 3 ER -