Konza LTER Publications

Export 2095 results:
Author [ Title(Asc)] Type Year
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Vinton MA. Bison grazing patterns and plant responses on Kansas tallgrass prairie. 1990;MS Thesis:1 -57.
Raynor EJ, Joern A, Briggs JM. Bison foraging responds to fire frequency in nutritionally heterogeneous grassland. Ecology. 2015;96:1586 -1597. doi:10.1890/14-2027.1.
Grudzinski BP, Daniels MD, Anibas K, Spencer D. Bison and cattle grazing management, bare ground coverage, and links to suspended sediment concentrations in grassland streams. Journal of the American Water Resources Association. 2016;52(1):16-30. doi:10.1111/1752-1688.12364.
N. Anguiano V. Bison and cattle grazing influences on soil microbial N cycling and ecosystem N pools in annually burned tallgrass prairies. Department of Biology. 2023;MS Thesis. Available at: https://hdl.handle.net/2097/43647.
Finck EJ. Birds wintering on the Konza Prairie Research Natural Area. Clambey GK, Pemble RH. 1986:91 -94.
Zimmerman JL. Birds of Konza Prairie Research Natural Area, Kansas. The Prairie Naturalist. 1985;17:185 -192.
Zimmerman JL. The Birds of Konza: Avian Ecology of the Tallgrass Prairie. Lawrence, KS: University Press of Kansas; 1993:176 -.
Hallett LM, Hsu JS, Cleland EE, et al. Biotic mechanisms of community stability shift along a precipitation gradient. Ecology. 2014;95:1693 -1700. doi:10.1890/13-0895.1.
Dyer MI, Turner CL, Seastedt TR. Biotic interactions between grazers and plants: Relationships contributing to atmospheric boundary layer dynamics. Journal of Atmospheric Sciences. 1998;55:1247 -1259. Available at: http://journals.ametsoc.org/doi/pdf/10.1175/1520-0469(1998)055%3C1247%3ABIBGAP%3E2.0.CO%3B2.
Bach EM. Biotic and abiotic drivers of soil microbial community recovery and ecosystem change during grasslands restoration. 2009;MS Thesis. Available at: https://www.researchgate.net/publication/42361822_Biotic_and_Abiotic_Drivers_of_Soil_Microbial_Community_Recovery_and_Ecosystem_Change_during_Grassland_Restoration.
Romaní AM, Chauvet E, Febria C, et al. The biota of intermittent rivers and ephemeral streams: prokaryotes, fungi, and protozoans. Elsevier; 2017:161 - 188. doi:10.1016/B978-0-12-803835-2.00009-7.
Wagle P, Xiao X, Scott RL, et al. Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States. Agricultural and Forest Meteorology. 2015;214-215:293 - 305. doi:10.1016/j.agrformet.2015.08.265.
Owensby CE, Coyne PI, Ham JM, Auen LM, Knapp AK. Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO2. Ecological Applications. 1993;3:644 -653. doi:10.2307/1942097.
Owensby CE, Ham JM, Knapp AK, Auen LM. Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Global Change Biology. 1999;5:497 -506. doi:10.1046/j.1365-2486.1999.00245.x.
Hopper GW, Gido KB, Pennock CA, et al. Biomass loss and change in species dominance shift stream community excretion stoichiometry during severe drought. Freshwater Biology. 2020;65(3):403-416. doi:10.1111/fwb.13433.
Towne EG, Knapp AK. Biomass and density responses in tallgrass prairie legumes to annual fire and topographic position. American Journal of Botany. 1996;83:175 -179. Available at: http://www.jstor.org/stable/2445935.
Rice CW, Garcia FO. Biologically active pools of soil C and N in tallgrass prairie. In: Doran JW, Jones AJ Defining Soil Quality for a Sustainable Environment. Defining Soil Quality for a Sustainable Environment. Madison, WI: Soil Science Society of America; 1994:201 -208.
Dodds WK, Banks MK, Clenan CS, et al. Biological properties of soil and subsurface sediments under abandoned pasture and cropland. Soil Biology & Biochemistry. 1996;28:837 -846. doi:10.1016/0038-0717(96)00057-0.
Koyama A, Johnson NG, Brewer P, Webb CT, von Fischer JC. Biological and physical controls of methane uptake in grassland soils across the US Great Plains. Ecosphere. 2024;15(9):e4955. doi:10.1002/ecs2.v15.910.1002/ecs2.4955.
Blecker SW, McCulley RL, Chadwick OA, Kelly EF. Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochemical Cycles. 2006;20. doi:10.1029/2006GB002690.
Rudgers JA, Fox S, Porras-Alfaro A, et al. Biogeography of root-associated fungi in foundation grasses of North American plains. Biogeography. 2022;49(1):22-37. doi:10.1111/jbi.14260.
Jumpponen A, Herrera J, Porras-Alfaro A, Rudgers J. Biogeography of root-associated endophytes. In: Biogeography of Mycorrhizal Symbiosis. Cham: Springer International Publishing; 2017:195-222. doi:10.1007/978-3-319-56363-3.
Parody JM, Parker TH. Biogeographic variation in nest placement: a case study with conservation implications. Diversity and Distributions. 2002;8:11 -20. doi:10.1046/j.1366-9516.2001.00126.x.
Forrestel EJ. Biogeographic influences on grassland community structure and function. 2015;PhD Dissertation.
McCulley RL. Biogeochemical response of U.S. Great Plains grasslands to regional and interannual variability in precipitation. 2002;PhD Dissertation:1 -151. Available at: https://mountainscholar.org/handle/10217/82139.
Norris M. Biogeochemical consequences of landcover change in eastern Kansas. 2000;MS Thesis:1 -118.
McKinley DC, Norris MD, Johnson LC, Blair JM. Biogeochemical changes associated with Juniperus virginia encroachment into grasslands. In: Van Auken OW Ecological Studies Vol. 196, Western North American Juniperus communities: A dynamic vegetation type. Ecological Studies Vol. 196, Western North American Juniperus communities: A dynamic vegetation type. Springer-Verlag, NY; 2008:170 -187.
Price ANicholas, Zimmer MAnn, Bergstrom A, et al. Biogeochemical and community ecology responses to the wetting of non-perennial streams. Nature Water. 2024;2(9):815 - 826. doi:10.1038/s44221-024-00298-3.
Gao J, Goodin DG. Biodiversity analysis with multi-scale images in Konza Prairie Biological Station. 2002;25:101 -107.
Cheatham MR, Rouse MN, Esker PD, et al. Beyond yield: plant disease in the context of ecosystem services. Phytopathology. 2009;99:1228 -1236. doi:10.1094/PHYTO-99-11-1228.
Ladwig L, Ratajczak Z, Ocheltree TW, et al. Beyond arctic and alpine: the influence of winter climate on temperate ecosystems. Ecology. 2016;97(2):372 - 382. doi:10.1890/15-0153.1.
Soong JL, Dam M, Wall DH, M. Cotrufo F. Below‐ground biological responses to pyrogenic organic matter and litter inputs in grasslands. Nicolson SW, Wright GA, Sala A. Functional Ecology. 2017;31(1):260 - 269. doi:10.1111/fec.2017.31.issue-110.1111/1365-2435.12693.
Gora S. Belowground traits lack response to chronic nitrogen additions in the tallgrass prairie. Department of Biology. 2022;MS Thesis. Available at: https://libres.uncg.edu/ir/uncg/f/Gora_uncg_0154M_13625.pdf.
Seastedt TR. Belowground macroarthropods of annually burned and unburned tallgrass prairie. American Midland Naturalist. 1984;111:405 -408.
Paudel S, Longcore T, MacDonald B, et al. Belowground interactions with aboveground consequences: Invasive earthworms and arbuscular mycorrhizal fungi. Ecology. 2016;97(3):605 - 614. doi:10.1890/15-1085.
Derner JD, Briske DD. Below-ground carbon and nitrogen accumulation in perennial grasses: A comparison of caespitose and rhizomatous growth forms. Plant and Soil. 2001;237:117 -127. doi:10.1023/A:1013316829961.
VanderWeide BL, Hartnett DC, Carter DL. Belowground bud banks of tallgrass prairie are insensitive to multi-year, growing-season drought. Ecosphere. 2014;5: art103. doi:10.1890/ES14-00058.1.
Dalgleish HJ, Hartnett DC. Belowground bud banks increase along a precipitation gradient of the North American Great Plains: a test of the meristem limitation hypothesis. New Phytologist. 2006;171:81 -89. doi:10.1111/j.1469-8137.2006.01739.x.
Dalgleish HJ. Belowground bud banks as regulators of grassland dynamics. 2007;PhD Dissertation:1 -93. Available at: http://krex.k-state.edu/dspace/handle/2097/312.
Benson E, Hartnett DC, Mann K. Belowground bud banks and meristem limitation in tallgrass prairie plant populations. American Journal of Botany. 2004;91:416 -421. doi:10.3732/ajb.91.3.416.
VanderWeide BL, Hartnett DC. Belowground bud bank response to grazing under severe, short-term drought. Oecologia. 2015;178(3):795-806. doi:10.1007/s00442-015-3249-y.
Cleland EE, Lind EM, DeCrappeo NM, et al. Belowground biomass response to nutrient enrichment depends on light limitation across globally distributed grasslands. Ecosystems. 2019;22(7):1466–1477. doi:10.1007/s10021-019-00350-4.
Rice CW, Todd TC, Blair JM, Seastedt TR, Ramundo RA, Wilson GT. Belowground biology and processes. In: Knapp AK, Briggs JM, Hartnett DC, Collins SL Grassland Dynamics: Long-Term Ecological Research in Tallgrass Prairie. Grassland Dynamics: Long-Term Ecological Research in Tallgrass Prairie. New York: Oxford University Press; 1998:244 -264.
Benedix JH. A behavioral analysis of the plains pocket gopher (Geomys bursarius). 1991;PhD Dissertation:1 -117.
Larson DM, Dodds WK, Whiles MR, Thompson TR, Fulgoni JN. A before-and-after assessment of patch-burn grazing and riparian fencing along headwater streams. Journal of Applied Ecology. 2016;53(5):1543–1553. doi:10.1111/1365-2664.12692.
Rüegg J, Dodds WK, Daniels MD, et al. Baseflow physical characteristics differ at multiple spatial scales in stream networks across diverse biomes. Landscape Ecology. 2016;31(1):119-136. doi:10.1007/s10980-015-0289-y.
Garrett KA, Dendy SP, Power AG, Blaisdell GK, Alexander HM, McCarron JK. Barley yellow dwarf disease in natural populations of dominant tallgrass prairie species in Kansas. Plant Disease. 2004;88:574 -. doi:10.1094/PDIS.2004.88.5.574B.

Pages