Konza LTER Publications
Mass ratio effects underlie ecosystem responses to environmental change. Journal of Ecology. 2020;108(3):855-864. doi:10.1111/1365-2745.13330.
Precipitation amount and event size interact to reduce ecosystem functioning during dry years in a mesic grassland. Global Change Biology. 2020;26(2):658-668. doi:10.1111/gcb.14789.
. Rainfall‐manipulation experiments as simulated by terrestrial biosphere models: where do we stand?. Global Change Biology. 2020;26:3336–3355. doi:10.1111/gcb.15024.
Assessing precipitation, evapotranspiration, and NDVI as controls of U.S. Great Plains plant production. Ecosphere. 2019;10(10):e02889. doi:10.1002/ecs2.2889.
Decadal-scale shifts in soil hydraulic properties induced by altered precipitation. Science Advances. 2019;5(9):eaau6635. doi:10.1126/sciadv.aau6635.
. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences. 2019;116(36):17867-17873. doi:10.1073/pnas.1819027116.
Grassland sensitivity to extreme drought: Assessing the role of dominant species physiology and community functional composition. 2019;PhD Dissertation. Available at: https://mountainscholar.org/bitstream/handle/10217/197274/GriffinNolan_colostate_0053A_15495.pdf?sequence=1.
. How ecologists define drought, and why we should do better. Global Change Biology. 2019;25(10):3193 - 3200. doi:10.1111/gcb.14747.
Shifts in plant functional composition following long-term drought in grasslands. . Journal of Ecology. 2019;107(5):2133 - 2148. doi:10.1111/1365-2745.13252.
Ambient changes exceed treatment effects on plant species abundance in long-term global change experiments. Glob Chang Biol. 2018;24(12):5668 - 5679. doi:10.1111/gcb.14442.
Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences. 2018;15(11):3421 - 3437. doi:10.5194/bg-15-3421-2018.
Carbon exchange responses of a mesic grassland to an extreme gradient of precipitation. Oecologia. 2018:1 -12. doi:10.1007/s00442-018-4284-2.
. Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution. 2018;2:1925-1932. doi:https://doi.org/10.1038/s41559-018-0696-y.
Codominant grasses differ in gene expression under experimental climate extremes in native tallgrass prairie. PeerJ. 2018:e4394. doi:https://doi.org/10.7717/peerj.4394.
. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Global Change Biology. 2018;24(7):2818 - 2827. doi:10.1111/gcb.14113.
Legacy effects of a regional drought on aboveground net primary production in six central US grasslands. Plant Ecology. 2018;219(5):505 - 515. doi:10.1007/s11258-018-0813-7.
A reality check for climate change experiments: Do they reflect the real world?. Ecology. 2018;99(10):2145-2151. doi:10.1002/ecy.2474.
Trait selection and community weighting are key to understanding ecosystem responses to changing precipitation regimes. . Functional Ecology. 2018;32(7):1746 - 1756. doi:10.1111/1365-2435.13135.
Assessing community and ecosystem sensitivity to climate change - toward a more comparative approach. Journal of Vegetation Science. 2017;28(2):235 - 237. doi:10.1111/jvs.12524.
. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Global Change Biology. 2017;23(10). doi:10.1111/gcb.13706.
Asynchrony among local communities stabilises ecosystem function of metacommunities. . Ecology Letters. 2017. doi:10.1111/ele.12861.
Drought timing differentially affects above- and belowground productivity in a mesic grassland. Plant Ecology. 2017;218(3):317 - 328. doi:10.1007/s11258-016-0690-x.
. Photosynthetic responses of a dominant C4 grass to an experimental heat wave are mediated by soil moisture. Oecologia. 2017;183(1):303-313. doi:10.1007/s00442-016-3755-6.
. Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Global Change Biology. 2017;23(5):1774-1782. doi:10.1111/gcb.13504.
Reconciling inconsistencies in precipitation– productivity relationships: implications for climate change. New Phytologist. 2017;214(1):41-47. doi:10.1111/nph.14381.
. Altered rainfall patterns increase forb abundance and richness in native tallgrass prairie. Scientific Reports. 2016;(1). doi:10.1038/srep20120.
. Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions?. Ecology. 2016;97:561-568. doi:10.1890/15-1437.1.
. The immediate and prolonged effects of climate extremes on soil respiration in a mesic grassland. Journal of Geophysical Research: Biogeosciences. 2016;121(4):1034 - 1044. doi:10.1002/2015JG003256.
. Rangeland responses to predicted increases in drought extremity. Rangelands . 2016;38:191-196. Available at: http://dx.doi.org/10.1016/j.rala.2016.06.009.
. Shared drivers but divergent ecological responses: Insights from long-term experiments in mesic savanna grasslands. BioScience. 2016;66(8):666 - 682. doi:10.1093/biosci/biw077.
Stability of grassland soil C and N pools despite 25 years of an extreme climatic and disturbance regime. Journal of Geophysical Research: Biogeosciences. 2016;121(7):1934 - 1945. doi:10.1002/2016JG003370.
. Assessing grassland sensitivity to global change. 2015;PhD. Dissertation. Available at: https://mountainscholar.org/handle/10217/167147.
. Characterizing differences in precipitation regimes of extreme wet and dry years: Implications for climate change experiments. Global Change Biology. 2015;21:2624 -2633. doi:10.1111/gcb.12888.
Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes. Global Change Biology. 2015;21:335 -344. doi:10.1111/gcb.12673.
. Differential sensitivity to regional-scale drought in six central US grasslands. Oecologia. 2015;177:949 -957. doi:10.1007/s00442-015-3233-6.
. Global environmental change and the nature of aboveground net primary productivity responses: insights from long-term experiments. Oecologia. 2015;177(4):935 - 947. doi:10.1007/s00442-015-3230-9.
Stoichiometric homeostasis predicts plant species dominance, temporal stability and responses to global change. Ecology. 2015;96(9):2335. doi:10.1890/14-1897.1.
. Differential effects of extreme drought on production and respiration: Synthesis and modeling analysis. Biogeosciences. 2014;11:621 -633. doi:10.5194/bg-11-621-2014.
Geographic variation in growth and phenology of two dominant Central US grasses: Consequences for climate change. Journal of Plant Ecology. 2014;7:211 -221. doi:10.1093/jpe/rtt036.
. Loss of a large grazer impacts savanna grassland plant communities similarly in North America and South Africa. Oecologia. 2014;175:293 -303. doi:10.1007/s00442-014-2895-9.
Plant community response to loss of large herbivores differs between North American and South African savanna grasslands. Ecology. 2014;95:808 -816. doi:10.1890/13-1828.1.
Rainfall variability has minimal effects on grassland recovery from repeated grazing. Journal of Vegetation Science. 2014;25:36 -44. doi:10.1111/jvs.12065.
. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology. 2014;95:2646 -2656. doi:10.1890/13-2186.1.
. Responses to fire differ between South African and North American grassland communities. Journal of Vegetation Science. 2014;25:793 -804. doi:10.1111/jvs.12130.
. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Frontiers in Ecology and the Environment. 2013;11:147 -155. doi:10.1890/110279.
Ecological responses to climate extremes in a mesic grassland. 2013;PhD. Dissertation. Available at: http://hdl.handle.net/10217/82474.
. Community stability does not preclude ecosystem sensitivity to chronic resource alteration. Functional Ecology. 2012;26:1231 -1233. doi:10.1111/j.1365-2435.2012.02053.x.
. Past, present, and future roles of long-term experiments in the LTER Network. Bioscience. 2012;62:377 -389. doi:10.1525/bio.2012.62.4.9.