Konza LTER Publications
Export 209 results:
Author Title [ Type] Year Filters: First Letter Of Title is C [Clear All Filters]
Climate variability and ecosystem response at Long-Term Ecological Research sites. New York: Oxford University Press; 2003:459 -.
. Canopy photosynthesis. In: Photosynthesis. Photosynthesis. New York, N.Y: Alan R. Liss, Inc; 1989:227 -241.
. Challenges and approaches to statistical design and inference in high dimensional investigations. In: Plant Systems Biology, Methods in Molecular Biology Series. Plant Systems Biology, Methods in Molecular Biology Series. Totowa, NJ: The Humana Press Inc; 2009:181 -206. doi:10.1007/978-1-60327-563-7_9.
. Climate change and plant disease risk. In: Global Climate Change and Extreme Weather Events: Understanding the Contributions to Infectious Disease Emergence. Global Climate Change and Extreme Weather Events: Understanding the Contributions to Infectious Disease Emergence. National Academies Press; 2008:143 -155. Available at: https://vtechworks.lib.vt.edu/handle/10919/68091.
. Climate change, elevated CO2 and predictive modeling: Past and future climate change scenarios for the tallgrass prairie. In: Grassland Dynamics: Long-Term Ecological Research in Tallgrass Prairie. Grassland Dynamics: Long-Term Ecological Research in Tallgrass Prairie. New York: Oxford University Press; 1998:283 -300. Available at: http://www.colostate.edu/Depts/GDPE/Distinguished_Ecologists/2005/Hayden/grassland%20dynamics%20ch16.pdf.
. Climate change in grassland ecosystems: current impacts and potential actions for a sustainable future. In: CLIMATE ACTIONS - LOCAL APPLICATIONS AND PRACTICAL SOLUTIONS. 1st ed. CLIMATE ACTIONS - LOCAL APPLICATIONS AND PRACTICAL SOLUTIONS. CRC; 2022:36. Available at: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003048701-4/climate-change-grassland-ecosystems-jesse-nippert-seton-bachle-rachel-keen-emily-wedel.
. Climate variability in tallgrass prairie at multiple timescales: Konza Prairie Biological Station. In: Climate Variability and Ecosystem Response at Long-Term Ecological Research Sites. Climate Variability and Ecosystem Response at Long-Term Ecological Research Sites. New York: Oxford University Press; 2003:411 -424.
. Comparative ecology of native and introduced ungulates. In: Ecology and Conservation of Great Plains Vertebrates. Ecology and Conservation of Great Plains Vertebrates. New York: Springer-Verlag; 1997:72 -101. doi:10.1007/978-1-4757-2703-6_4.
. Comparison of spatial and temporal variability of ecological parameters from 12 North American ecosystems. In: Evaluating And Monitoring The Health Of Large-Scale Ecosystems, NATO ASI series, Vol I 28. Evaluating And Monitoring The Health Of Large-Scale Ecosystems, NATO ASI series, Vol I 28. Berlin: Springer-Verlag; 1995:359 -383.
Considerations in modeling the hydrology of Konza Prairie long-term ecological research site. In: Modeling Agricultural, Forest and Rangeland Hydrology. Modeling Agricultural, Forest and Rangeland Hydrology. St.Joseph, MI: American Society of Agricultural Engineers; 1988:377 -386.
. The coyote: an indicator species of environmental change on the great plains. In: Our living resources: a report to the nation on the distribution, abundance, and health of U.S. plants, animals, and ecosystems. Our living resources: a report to the nation on the distribution, abundance, and health of U.S. plants, animals, and ecosystems. Washington, DC: U.S. Department of the Interior, National Biological Service; 1995:305 -307.
. .
Climate variability at multiple time scales: implications for productivity in tallgrass prairie. 2002:312 -316. Available at: https://ams.confex.com/ams/15BioAero/techprogram/paper_48840.htm.
. Comparing the influence of precipitation, fire, and topography on plant productivity in the tallgrass prairie. 2005;3. Available at: http://tiee.ecoed.net/vol/v3/issues/data_sets/konza/abstract.html.
. Contribution to the taxonomy and faunistics of the genus Meropleon Dyar (Lepidoptera: Noctuidae). 2005:812 -819. Available at: http://cat.inist.fr/?aModele=afficheN&cpsidt=17159757.
. Controlling experimental bluestem prairie fires. . 1978:169 -171.
. . C3 shrub expansion in a C4 grassland: positive post-fire responses in resources and shoot growth. American Journal of Botany. 2003;90:1496 -1501. doi:10.3732/ajb.90.10.1496.
. C3 woody plant expansion in a C4 grassland: are grasses and shrubs functionally distinct?. American Journal of Botany. 2001;88:1818 -1823. Available at: http://www.amjbot.org/cgi/content/abstract/88/10/1818.
. Caching behavior by eastern woodrats (Neotoma floridana ) in relation to food perishability. Animal Behavior. 1988;36:1525 -1532. doi:10.1016/S0003-3472(88)80223-9.
. Can rDNA analyses of diverse fungal communities in soil and rootsdetect effects of environmental manipulations--a case study from tallgrass prairie. Mycologia. 2005;97:1177 -1194. doi:10.3852/mycologia.97.6.1177.
. Can uptake length in streams be determined by nutrient addition experiments? Results from an inter-biome comparison study. Journal of the North American Benthological Society. 2002;21:544 -560. doi:10.2307/1468429.
Canopy interception of nitrogen in bulk precipitation by annually burned and unburned tallgrass prairie. Oecologia. 1985;66:88 -92. doi:10.1007/BF00378557.
. Canopy rainfall interception and throughfall in burned and unburned tallgrass prairie. The Southwestern Naturalist. 1987;32:267 -271. doi:10.2307/3671570.
. Carbon and nitrogen mineralization in tallgrass prairie and agricultural soil profiles. Soil Science Society of America Journal. 1998;62:942 -951. doi:10.2136/sssaj1998.03615995006200040014x.
. Carbon and nitrogen pools in a tallgrass prairie soil under elevated carbon dioxide. Soil Science Society of America Journal. 2004;68:148 -153. doi:10.2136/sssaj2004.1480.
. Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. Oecologia. 2004;140:458 -467. doi:10.1007/s00442-004-1599-y.
Carbon and water relations of juvenile Quercus species in tallgrass prairie. Journal of Vegetation Science. 2001;12:807 -816. doi:10.2307/3236868.
Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant and Soil. 2000;227:127 -137. doi:10.1023/A:1026590001307.
. Carbon exchange responses of a mesic grassland to an extreme gradient of precipitation. Oecologia. 2018:1 -12. doi:10.1007/s00442-018-4284-2.
. Carbon isotope variation in modern soils of the tallgrass prairie:Analogues for the interpretation of isotopicrecords derived from paleosols. Quaternary International. 2007;162-163:3 -20. doi:10.1016/j.quaint.2006.10.036.
. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature. 1989;341:138 -139. doi:10.2307/1940178.
. Carrion beetles (Coleoptera: Silphidae) of the Konza Prairie Biological Stationbeetles (Coleoptera: Silphidae) of the Konza Prairie Biological Station. Journal of the Kansas Entomological Society. 2005;78:124 -123. doi:10.2317/0305.06.1.
. A case of senescence for the white-footed mouse?. The Southwestern Naturalist. 1997;42:236 -237.
. Causes and consequences of avian within-season dispersal decisions in a dynamic grassland environment. Animal Behaviour. 2019;155:77 - 87. doi:10.1016/j.anbehav.2019.06.009.
. Causes of fire effects in tallgrass prairie. Ecology. 1988;69:46 -58. doi:10.2307/1943159.
. Centimeter-scale patterns of oxygen concentrations related to nitrification in prairie stream substrate. Journal of the North American Benthological Society. 2001;20:347 -357. doi:10.2307/1468033.
. Centimeter-scale stream substratum heterogeneity and metabolic rates. Hydrobiologia. 2009;623:53 -62. doi:10.1007/s10750-008-9647-y.
. Central place foraging for non-food items: determination of the stick size value relationship of house building materials collected by eastern woodrats. The American Naturalist. 1984;123:841 -853. doi:http://www.jstor.org/stable/2460904.
. Cessation of burning dries soils long-term in a tallgrass prairie. Ecosystems. 2014;17:54 -65. doi:10.1007/s10021-013-9706-8.
. Challenging the maximum rooting depth paradigm in grasslands and savannas. . Functional Ecology. 2015;29(6):739 - 745. doi:10.1111/1365-2435.12390.
. Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution. 2018;2:1925-1932. doi:https://doi.org/10.1038/s41559-018-0696-y.
Change in nutrient content of foods stored by eastern woodrats (Neotoma florida). Journal of Mammalogy. 1992;73:835 -839. doi:10.2307/1382204.
. Changes in ecosystem structure and function along a chronosequence of restored grasslands. Ecological Applications. 2002;12:1688 -1701. doi:10.1890/1051-0761(2002)012[1688:CIESAF]2.0.CO;2.
. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biology & Biochemistry. 1999;31:769 -777. doi:10.1016/S0038-0717(98)00177-1.
. Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Global Change Biology. 2008;14:1600 -1608. doi:10.1111/j.1365-2486.2008.01605.x.
. Changes in microbial populations from eastern woodrat caches. Southwestern Naturalist. 1993;38:30 -35. doi:10.2307/3671641.
. Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive above-ground productivity in a tallgrass prairie. Journal of Ecology. 2014;102:1649 -1660. doi:10.1111/1365-2745.12312.
Changes in potential nitrous oxide efflux during grassland restoration. Journal of Environmental Quality. 2019;48(6):1913-1917. doi:10.2134/jeq2019.05.0187.
. Changes in soil properties, microbial biomass, and fluxes of C and N in soil following post-agricultural grassland restoration. Applied Soil Ecology. 2016;100:186 - 194. doi:10.1016/j.apsoil.2016.01.001.
.