Konza LTER Publications
Export 974 results:
Author Title [ Type] Year Filters: First Letter Of Last Name is B [Clear All Filters]
Knowledge and tools to enhance resilience of beef grazing systems for sustainable animal protein production. Annals of the New York Academy of Sciences. 2014;1328(1):10 - 17. doi:10.1111/nyas.12572.
Land cover change in eastern Kansas: litter dynamics of closed-canopy eastern redcedar forests in tallgrass prairie. Canadian Journal of Botany. 2001;79:214 -222. doi:10.1139/b00-159.
. Land fragmentation under rapid urbanization: A cross-site analysis of Southwestern cities. Urban Ecosystems. 2011;14:429 -455. doi:10.1007/s11252-011-0157-8.
Lands for long-term research in conservation biology. Conservation Biology. 1990;4:301 -308. doi:10.1111/j.1523-1739.1990.tb00292.x.
. Lands for long-term research in conservation biology. Conservation Biology. 1990;4:301 -308. doi:10.1111/j.1523-1739.1990.tb00292.x.
. Landscape context matters: local habitat and landscape effects on the abundance and patch occupancy of collared lizards in managed grasslands. Landscape Ecology. 2011;26:837 -850. doi:10.1007/s10980-011-9612-4.
. Landscape-level interactions between topoedaphic features and nitrogen limitation in tallgrass prairie. Landscape Ecology. 1995;10:337 -348. doi:10.1007/BF00130211.
. Life-history constraints in grassland plant species: a growth-defence trade-off is the norm. Ecology Letters. 2013;16(4):513 - 521. doi:10.1111/ele.12078.
Life-history constraints in grassland plant species: a growth-defence trade-off is the norm. Ecology Letters. 2013;16(4):513 - 521. doi:10.1111/ele.12078.
Life-history constraints in grassland plant species: a growth-defence trade-off is the norm. Ecology Letters. 2013;16(4):513 - 521. doi:10.1111/ele.12078.
Limited effects of dominant species population source on community composition during community assembly. Journal of Vegetation Science. 2013;24:429 -440. doi:10.1111/j.1654-1103.2012.01475.x.
. Limited legacy effects of extreme multiyear drought on carbon and nitrogen cycling in a mesic grassland. Elementa: Science of the Anthropocene. 2022;10(1):000093. doi:10.1525/elementa.2021.000093.
. Linking changes in species composition and biomass in a globally distributed grassland experiment. Ecology Letters. 2022;25(12):2699-2712. doi:10.1111/ele.14126.
Linking changes in species composition and biomass in a globally distributed grassland experiment. Ecology Letters. 2022;25(12):2699-2712. doi:10.1111/ele.14126.
Linking changes in species composition and biomass in a globally distributed grassland experiment. Ecology Letters. 2022;25(12):2699-2712. doi:10.1111/ele.14126.
Linking changes in species composition and biomass in a globally distributed grassland experiment. Ecology Letters. 2022;25(12):2699-2712. doi:10.1111/ele.14126.
Linking changes in species composition and biomass in a globally distributed grassland experiment. Ecology Letters. 2022;25(12):2699-2712. doi:10.1111/ele.14126.
Linking changes in species composition and biomass in a globally distributed grassland experiment. Ecology Letters. 2022;25(12):2699-2712. doi:10.1111/ele.14126.
Linking plant growth responses across topographic gradients in tallgrass prairie. Oecologia. 2011;166:1131 -1142. doi:10.1007/s00442-011-1948-6.
Local adaptation, genetic divergence, and experimental selection in a foundation grass across the US Great Plains’ climate gradient. Global Change Biology. 2019;25(3):850 - 868. doi:10.1111/gcb.14534.
Local adaptation, genetic divergence, and experimental selection in a foundation grass across the US Great Plains’ climate gradient. Global Change Biology. 2019;25(3):850 - 868. doi:10.1111/gcb.14534.
Local distribution of prairie voles (Microtus ochrogaster) on Konza Prairie: effect of topographic position. Transactions of the Kansas Academy of Science. 1995;98:61 -67. doi:10.2307/3628079.
. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution. 2018;2:50-56. doi:10.1038/s41559-017-0395-0.
Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution. 2018;2:50-56. doi:10.1038/s41559-017-0395-0.
Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution. 2018;2:50-56. doi:10.1038/s41559-017-0395-0.
Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution. 2018;2:50-56. doi:10.1038/s41559-017-0395-0.
Long- and short-term responses of Asclepias species differ in respect to fire, grazing, and nutrient addition. American Journal of Botany. 2018;105(12):2008-2017. doi:10.1002/ajb2.2018.105.issue-1210.1002/ajb2.1197.
Long-term ecological research in a human-dominated world. BioScience. 2012;62:342 -353. doi:10.1525/bio.2012.62.4.6.
Long-term effects of grazing and topography on extra-radical hyphae of arbuscular mycorrhizal fungi in semi-arid grasslands. Mycorrhiza. 2018;28(2):117 - 127. doi:10.1007/s00572-017-0812-x.
Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie. PLoS ONE. 2013;8:67884 -. doi:10.1371/journal.pone.0067884.
. Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Global Change Biology. 2009;15:1320 -1338. doi:10.1111/j.1365-2486.2008.01837.x.
Long-term patterns of shrub expansion in a C4-dominated grassland: fire frequency and the dynamics of shrub cover and abundance. American Journal of Botany. 2003;90:423 -428. doi:10.3732/ajb.90.3.423.
. Long-term research in stream ecology. Bulletin of the Ecological Society of America. 1985;66:346 -353. doi:http://www.jstor.org/stable/20166454.
. Loss of a large grazer impacts savanna grassland plant communities similarly in North America and South Africa. Oecologia. 2014;175:293 -303. doi:10.1007/s00442-014-2895-9.
Loss of a large grazer impacts savanna grassland plant communities similarly in North America and South Africa. Oecologia. 2014;175:293 -303. doi:10.1007/s00442-014-2895-9.
Making sense of multivariate community responses in global change experiments. Ecosphere. 2022;13(10):e4249. doi:10.1002/ecs2.4249.
Making sense of multivariate community responses in global change experiments. Ecosphere. 2022;13(10):e4249. doi:10.1002/ecs2.4249.
Making sense of multivariate community responses in global change experiments. Ecosphere. 2022;13(10):e4249. doi:10.1002/ecs2.4249.
Management practices in tallgrass prairie: Large- and small-scale experimental effects on species composition. Journal of Applied Ecology. 1993;30:247 -255. doi:10.1007/978-1-4612-4018-1_12.
. Managing Data from Multiple Disciplines, Scales, and Sites to Support Synthesis and Modeling. Remote Sensing Environment. 1999;70:99 -107. doi:10.1016/S0034-4257(99)00060-7.
. Mass ratio effects underlie ecosystem responses to environmental change. Journal of Ecology. 2020;108(3):855-864. doi:10.1111/1365-2745.13330.
Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Science of The Total Environment. 2018;636:360 - 366. doi:10.1016/j.scitotenv.2018.04.290.
Measurement and modeling of soil CO2 flux in a temperate grassland under mowed and burned regimes. Ecological Applications. 2002;12:1318 -1328. doi:10.1890/1051-0761(2002)012[1318:MAMOSC]2.0.CO;2.
. Measuring genetic diversity in ecological studies. Plant Ecology. 2012;213:1105 -1115. doi:10.1007/s11258-012-0069-6.
. Mechanisms influencing physically sequestered soil carbon in temperate restored grasslands in South Africa and North America. Biogeochemistry. 2021. doi:10.1007/s10533-021-00774-y.
. Mechanisms influencing physically sequestered soil carbon in temperate restored grasslands in South Africa and North America. Biogeochemistry. 2021. doi:10.1007/s10533-021-00774-y.
. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science. 2020;368(6489):417-420. doi:10.1126/science.aax9931.
. Metaphenomic response of a native prairie soil microbiome to moisture perturbations. . mSystems. 2019;4:e00061-19. doi:10.1128/mSystems.00061-19.
Metaphenomic response of a native prairie soil microbiome to moisture perturbations. . mSystems. 2019;4:e00061-19. doi:10.1128/mSystems.00061-19.
Metaphenomic response of a native prairie soil microbiome to moisture perturbations. . mSystems. 2019;4:e00061-19. doi:10.1128/mSystems.00061-19.