Konza LTER Publications
Export 987 results:
Author Title Type [ Year] Filters: First Letter Of Last Name is B [Clear All Filters]
Temporal variability in production is not consistently affected by global change drivers across herbaceous-dominated ecosystems. Oecologia. 2020;194:735–744. doi:10.1007/s00442-020-04787-6.
Terabase metagenome sequencing of grassland soil microbiomes. Microbiology Resource Announcements. 2020;9(32):00718-20. doi:10.1128/MRA.00718-20.
Three decades of divergent land use and plant community change alters soil C and N content in tallgrass prairie. Journal of Geophysical Research: Biogeosciences. 2020;125(8):e2020JG005723. doi:10.1029/2020JG005723.
. Towards a new conceptual model for groundwater flow in merokarst systems: Insights from multiple geophysical approaches. Hydrology and Earth System Science. 2020;34(24):4697-4711. doi:10.1002/hyp.13898.
. Anatomical constraints on grass physiological responses depend on water availability. Department of Biology. 2021;PhD Dissertation. Available at: https://krex.k-state.edu/dspace/handle/2097/41354.
. Assessing linkages between small impoundments and long-term trajectories of prairie stream fish assemblages. The American Midland Naturalist. 2021;185(2):187 - 200. doi:10.1674/0003-0031-185.2.187.
. Cultural conformity and persistence in Dickcissel song are higher in locations in which males show high site fidelity. Ornithology. 2021;139(1):1-17. doi:10.1093/ornithology/ukab061.
Deepening roots can enhance carbonate weathering by amplifying CO2-rich recharge. Biogeosciences. 2021;18:55-75. doi:10.5194/bg-18-55-2021.
. Determinants of community compositional change are equally affected by global change. . Ecology Letters. 2021;24(9):1892-1904. doi:10.1111/ele.13824.
Determinants of community compositional change are equally affected by global change. . Ecology Letters. 2021;24(9):1892-1904. doi:10.1111/ele.13824.
Determinants of community compositional change are equally affected by global change. . Ecology Letters. 2021;24(9):1892-1904. doi:10.1111/ele.13824.
Direct and indirect drivers of grassland bird population declines and settlement decisions over broad spatial and temporal scales. Department of Biology. 2021;MS Thesis. Available at: https://krex.k-state.edu/dspace/handle/2097/41480.
. Disentangling effects of predators and landscape factors as drivers of stream fish community structure. Freshwater Biology. 2021;66(4):656 - 668. doi:10.1111/fwb.13668.
. Do fine‐scale experiments underestimate predator consumption rates?. Journal of Animal Ecology. 2021;90(10):2391 - 2403. doi:10.1111/1365-2656.13549.
. Is a drought a drought in grasslands? Productivity responses to different types of drought. Oecologia. 2021. doi:10.1007/s00442-020-04793-8.
Effects of compounded precipitation pattern intensification and drought occur belowground in a mesic grassland. Ecosystems. 2021. doi:10.1007/s10021-021-00714-9.
. Experimental drought re‐ordered assemblages of root‐associated fungi across North American grasslands. Journal of Ecology. 2021;109(2):776 - 792. doi:10.1111/1365-2745.13505.
Fire frequency, state change and hysteresis in tallgrass prairie. Ecology Letters. 2021;24(4):636-647. doi:10.1111/ele.13676.
. Fire frequency, state change and hysteresis in tallgrass prairie. Ecology Letters. 2021;24(4):636-647. doi:10.1111/ele.13676.
. Fire frequency, state change and hysteresis in tallgrass prairie. Ecology Letters. 2021;24(4):636-647. doi:10.1111/ele.13676.
. How and why plant ionomes vary across North American grasslands and its implications for herbivore abundance. Ecology. 2021;102(10):e03459. doi:10.1002/ecy.3459.
. How long do population level field experiments need to be? Utilising data from the 40‐year‐old LTER network. . Ecology Letters. 2021;24(5):1103 - 1111. doi:10.1111/ele.v24.510.1111/ele.13710.
. Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology. 2021;102(2):e03218. doi:10.1002/ecy.3218.
Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology. 2021;102(2):e03218. doi:10.1002/ecy.3218.
Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology. 2021;102(2):e03218. doi:10.1002/ecy.3218.
Mechanisms influencing physically sequestered soil carbon in temperate restored grasslands in South Africa and North America. Biogeochemistry. 2021. doi:10.1007/s10533-021-00774-y.
. Mechanisms influencing physically sequestered soil carbon in temperate restored grasslands in South Africa and North America. Biogeochemistry. 2021. doi:10.1007/s10533-021-00774-y.
. Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences. 2021;118(28):e2023718118. doi:10.1073/pnas.2023718118.
Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences. 2021;118(28):e2023718118. doi:10.1073/pnas.2023718118.
Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences. 2021;118(28):e2023718118. doi:10.1073/pnas.2023718118.
Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences. 2021;118(28):e2023718118. doi:10.1073/pnas.2023718118.
Patterns and trends of organic matter processing and transport: Insights from the US Long-Term Ecological Research network. Climate Change Ecology. 2021;2:100025. doi:10.1016/j.ecochg.2021.100025.
Patterns and trends of organic matter processing and transport: Insights from the US Long-Term Ecological Research network. Climate Change Ecology. 2021;2:100025. doi:10.1016/j.ecochg.2021.100025.
Plant diversity and litter accumulation mediate the loss of foliar endophyte fungal richness following nutrient addition. Ecology. 2021;102(1):e03210. doi:10.1002/ecy.3210.
. Plant legacies and soil microbial community dynamics control soil respiration. Soil Biology and Biochemistry. 2021;160:108350. doi:10.1016/j.soilbio.2021.108350.
. Is a prescribed fire sufficient to slow the spread of woody plants in an infrequently burned grassland? A case study in tallgrass prairie. Rangeland Ecology & Management. 2021;78:79 - 89. doi:10.1016/j.rama.2021.05.007.
. RivFishTIME: A global database of fish time‐series to study global change ecology in riverine systems. . Global Ecology and Biogeography. 2021;30(1):38 - 50. doi:10.1111/geb.13210.
RivFishTIME: A global database of fish time‐series to study global change ecology in riverine systems. . Global Ecology and Biogeography. 2021;30(1):38 - 50. doi:10.1111/geb.13210.
RivFishTIME: A global database of fish time‐series to study global change ecology in riverine systems. . Global Ecology and Biogeography. 2021;30(1):38 - 50. doi:10.1111/geb.13210.
SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0. Earth System Science Data. 2021;13(5):1843 - 1854. doi:10.5194/essd-13-1843-2021.
SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0. Earth System Science Data. 2021;13(5):1843 - 1854. doi:10.5194/essd-13-1843-2021.
SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0. Earth System Science Data. 2021;13(5):1843 - 1854. doi:10.5194/essd-13-1843-2021.
SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0. Earth System Science Data. 2021;13(5):1843 - 1854. doi:10.5194/essd-13-1843-2021.
SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0. Earth System Science Data. 2021;13(5):1843 - 1854. doi:10.5194/essd-13-1843-2021.
Spatial variation in soil microbial processes as a result of woody encroachment depends on shrub size in tallgrass prairie. Plant and Soil. 2021;460:359 - 373. doi:10.1007/s11104-020-04813-9.
. Species loss due to nutrient addition increases with spatial scale in global grasslands. . Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Species loss due to nutrient addition increases with spatial scale in global grasslands. . Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Species loss due to nutrient addition increases with spatial scale in global grasslands. . Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Species loss due to nutrient addition increases with spatial scale in global grasslands. . Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Species loss due to nutrient addition increases with spatial scale in global grasslands. . Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.