Konza LTER Publications
Export 988 results:
Author Title [ Type] Year Filters: First Letter Of Last Name is B [Clear All Filters]
Temporal variability in production is not consistently affected by global change drivers across herbaceous-dominated ecosystems. Oecologia. 2020;194:735–744.
Temporal variability in large grazer space use in an experimental landscape. Ecosphere. 2017;8(1). doi:10.1002/ecs2.1674.
Temporal scales of tropospheric CO2, precipitation, and ecosystem responses in the central Great Plains. Remote Sensing of Environment. 2012;127:316 - 328. doi:10.1016/j.rse.2012.09.012.
. Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology. 2021;102(11). doi:10.1002/ecy.3504.
Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology. 2021;102(11). doi:10.1002/ecy.3504.
Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology. 2021;102(11). doi:10.1002/ecy.3504.
Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology. 2021;102(11). doi:10.1002/ecy.3504.
Temporal dynamics of plant community regeneration sources during tallgrass prairie restoration. Plant Ecology. 2013;214:1169 -1180. doi:10.1007/s11258-013-0241-7.
. Temperature effects on performance and physiology of two prairie stream minnows. . Conservation Physiology. 2019;7(1):coz063. doi:10.1093/conphys/coz063.
. Temperature and kairomone induced life history plasticity in coexisting Daphnia. Aquatic Ecology. 2006;40:361 -372. doi:10.1007/s10452-006-9035-5.
. Taxon-dependent scaling: beetles, birds, and vegetation at four North American grassland sites. Landscape Ecology. 2005;20:675 -688. doi:10.1007/s10980-004-5651-4.
. The synergistic response of primary production in grasslands to combined nitrogen and phosphorus addition is caused by increased nutrient uptake and retention. Plant and Soil. 2023. doi:10.1007/s11104-023-06083-7.
The synergistic response of primary production in grasslands to combined nitrogen and phosphorus addition is caused by increased nutrient uptake and retention. Plant and Soil. 2023. doi:10.1007/s11104-023-06083-7.
Synergies among environmental science research and monitoring networks: A research agenda. Earth's Future. 2021;9(3):e2020EF001631. doi:10.1029/2020EF001631.
Sustainable management of insect herbivores in grassland ecosystems: new perspectives in grasshopper control. BioScience. 2006;56:743 -755. doi:10.1641/0006-3568(2006)56[743:SMOIHI]2.0.CO;2.
. Survey of common sunflower (Helianthus annuus) resistance to imazethapyr and chlorimuron in northeast Kansas. Weed Technology. 1999;13:510 -514.
. Surprises and insights from long-term aquatic datasets and experiments. BioScience. 2012;62:709 -721. doi:10.1525/bio.2012.62.8.4.
Stronger fertilization effects on aboveground versus belowground plant properties across nine U.S. grasslands. Ecology. 2023;104(2):e3891. doi:10.1002/ecy.3891.
Stronger fertilization effects on aboveground versus belowground plant properties across nine U.S. grasslands. Ecology. 2023;104(2):e3891. doi:10.1002/ecy.3891.
Stream discharge and riparian land use influence in-stream concentrations and loads of phosphorus from Central Plains watersheds. Environmental Management. 2009;44:552 -565. doi:10.1007/s00267-009-9332-6.
. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature. 2008;452:202 -207. doi:10.1038/nature06686.
Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature. 2008;452:202 -207. doi:10.1038/nature06686.
Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature. 2008;452:202 -207. doi:10.1038/nature06686.
State changes: insights from the U.S. Long Term Ecological Research Network. Ecosphere. 2021;12(5). doi:10.1002/ecs2.v12.510.1002/ecs2.3433.
State changes: insights from the U.S. Long Term Ecological Research Network. Ecosphere. 2021;12(5). doi:10.1002/ecs2.v12.510.1002/ecs2.3433.
State changes: insights from the U.S. Long Term Ecological Research Network. Ecosphere. 2021;12(5). doi:10.1002/ecs2.v12.510.1002/ecs2.3433.
Stability of tallgrass prairie during a 19-year increase in growing season precipitation. Functional Ecology. 2012;26(6):1450 - 1459. doi:10.1111/j.1365-2435.2012.01995.x.
Stability of grassland soil C and N pools despite 25 years of an extreme climatic and disturbance regime. Journal of Geophysical Research: Biogeosciences. 2016;121(7):1934 - 1945. doi:10.1002/2016JG003370.
. SPOT satellite data for pattern recognition on the North American tall-grass prairie Long-term Ecological Research Site. Geocarto International. 1988;3:37 -40. doi:10.1080/10106048809354174.
. Species, season, and density of buried seeds surviving fox squirrel depredation. Prairie Naturalist. 2001;33:197 -208.
. Species responses to nitrogen fertilization in herbaceous plant communities, and associated species traits. Ecology. 2008;89:1175 -. doi:10.1890/07-1104.1.
Species loss due to nutrient addition increases with spatial scale in global grasslands. . Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Species loss due to nutrient addition increases with spatial scale in global grasslands. . Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Species loss due to nutrient addition increases with spatial scale in global grasslands. . Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Species loss due to nutrient addition increases with spatial scale in global grasslands. . Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Species loss due to nutrient addition increases with spatial scale in global grasslands. . Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Species loss due to nutrient addition increases with spatial scale in global grasslands. . Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Species loss due to nutrient addition increases with spatial scale in global grasslands. . Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Species loss due to nutrient addition increases with spatial scale in global grasslands. . Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Spatiotemporal scales of non-equilibrium community dynamics: a methodological challenge. New Zealand Journal of Ecology. 1997;21:199 -206. Available at: http://www.jstor.org/stable/24054516.
. Spatial variation in soil microbial processes as a result of woody encroachment depends on shrub size in tallgrass prairie. Plant and Soil. 2021;460:359 - 373. doi:10.1007/s11104-020-04813-9.
. Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. . Ecology Letters. 2018;21(9):1364 -1371. doi:10.1111/ele.13102.
Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. . Ecology Letters. 2018;21(9):1364 -1371. doi:10.1111/ele.13102.
Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. . Ecology Letters. 2018;21(9):1364 -1371. doi:10.1111/ele.13102.
Spatial connectedness of plant species: potential links for apparent competition via plant diseases. Plant Pathology. 2013;62:1195 -1428. doi:10.1111/ppa.12045.
. Spatial and temporal patterns of vegetation in the Flint Hills. Transactions Kansas Academy of Science. 1997;100:10 -20. doi:10.2307/3628435.
. Spatial and successional dynamics of microbial biofilm communities in a grassland stream ecosystem. Molecular Ecology. 2016;25(18):4674 - 4688. doi:10.1111/mec.13784.
. Spatial and physical characteristics of bison wallows in the Flint Hills of Kansas. Ecosphere. 2024;15(5):e4861. doi:10.1002/ecs2.v15.510.1002/ecs2.4861.
. Spatial and physical characteristics of bison wallows in the Flint Hills of Kansas. Ecosphere. 2024;15(5):e4861. doi:10.1002/ecs2.v15.510.1002/ecs2.4861.
. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biology & Biochemistry. 2011;42:2182 -2191. doi:10.1016/j.soilbio.2010.08.014.
.