Konza LTER Publications

Export 2074 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Williams MA, Xia K. Characterization of the water soluble soil organic pool following the rewetting of dry soil in a drought-prone tallgrass prairie. Soil Biology & Biochemistry. 2009;41:21 -28. doi:10.1016/j.soilbio.2008.08.013.
Edler C, Dodds WK. Characterization of a groundwater community dominated by Asellus tridentata (Isopoda). 1992:91 -99.
Post DM, Reichman OJ, Wooster D. Characteristics and significance of the caches of eastern woodrats (Neotoma floridana ). Journal of Mammalogy. 1993;74:688 -692. doi:10.2307/1382290.
Hristov AN, Johnson JMF, Rice CW, et al. Chapter 5: Agriculture. In: Cavallaro N, Shrestha G, Mayes MA, et al. Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. U.S. Global Change Research Program; 2018:229 - 263. doi:10.7930/SOCCR2.2018.Ch5.
Swenson LJ, Zipper S, Peterson DM, et al. Changes in water age during dry‐down of a non‐perennial stream. Water Resources Research. 2024;60(1):e2023WR034623. doi:10.1029/2023WR034623.
Tiemann LK, Billings SA. Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biology and Biochemistry. 2011;43(9):1837 - 1847. doi:10.1016/j.soilbio.2011.04.020.
Ocheltree TW, Nippert JB, Prasad PVV. Changes in stomatal conductance along grass blades reflect changes in leaf structure. Plant Cell and Environment. 2012;35:1040 -1049. doi:10.1111/j.1365-3040.2011.02470.x.
Ratajczak Z, D’Odorico PD, Nippert JB, Collins SL, Brunsell N, Ravi S. Changes in spatial variance during a grassland to shrubland state transition. Journal Ecology. 2017;105(3):750-760. doi:10.1111/1365-2745.12696.
Anandhi A, Hutchinson S, Harrington J, Rahmani V, Kirkham MB, Rice CW. Changes in spatial and temporal trends in wet, dry, warm and cold spell length or duration indices in Kansas, USA. International Journal of Climatology. 2016;36(12):4085 - 4101. doi:10.1002/joc.4619.
McArthur JV, Marzolf GR. Changes in soluble nutrients of prairie riparian vegetation during decomposition on a floodplain. The American Midland Naturalist. 1987;117:26 -34. doi:10.2307/2425704.
Rosenzweig ST, Carson MA, Baer SG, Blair JM. Changes in soil properties, microbial biomass, and fluxes of C and N in soil following post-agricultural grassland restoration. Applied Soil Ecology. 2016;100:186 - 194. doi:10.1016/j.apsoil.2016.01.001.
Smith DL. Changes in soil carbon dynamics during juniper expansion into tallgrass prairie. 2001;PhD Dissertation:1 -137.
Scott DA, Rosenzweig ST, Baer SG, Blair JM. Changes in potential nitrous oxide efflux during grassland restoration. Journal of Environmental Quality. 2019;48(6):1913-1917.
Avolio ML, Koerner SE, La Pierre KJ, et al. Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive above-ground productivity in a tallgrass prairie. Journal of Ecology. 2014;102:1649 -1660. doi:10.1111/1365-2745.12312.
Post DM, Urban JE. Changes in microbial populations from eastern woodrat caches. Southwestern Naturalist. 1993;38:30 -35. doi:10.2307/3671641.
Fay PA, Kaufman DM, Nippert JB, Carlisle JD, Harper CW. Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Global Change Biology. 2008;14:1600 -1608. doi:10.1111/j.1365-2486.2008.01605.x.
Ajwa HA, Dell CJ, Rice CW. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biology & Biochemistry. 1999;31:769 -777. doi:10.1016/S0038-0717(98)00177-1.
Baer SG, Kitchen DJ, Blair JM, Rice CW. Changes in ecosystem structure and function along a chronosequence of restored grasslands. Ecological Applications. 2002;12:1688 -1701. doi:10.1890/1051-0761(2002)012[1688:CIESAF]2.0.CO;2.
Baer SG. Changes in ecosystem function and effects of environmental complexity on foristic diversity during tallgrass prairie restoration. 2001;PhD Dissertation:1 -204.
Post DM. Change in nutrient content of foods stored by eastern woodrats (Neotoma florida). Journal of Mammalogy. 1992;73:835 -839. doi:10.2307/1382204.
Koerner SE, Smith MD, Burkepile DE, et al. Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution. 2018;2:1925-1932. doi:https://doi.org/10.1038/s41559-018-0696-y.
Nippert JB, Holdo RM. Challenging the maximum rooting depth paradigm in grasslands and savannas. Sayer E. Functional Ecology. 2015;29(6):739 - 745. doi:10.1111/1365-2435.12390.
Gadbury GL, Garrett KA, Allison DB. Challenges and approaches to statistical design and inference in high dimensional investigations. In: Belostotsky DA Plant Systems Biology, Methods in Molecular Biology Series. Plant Systems Biology, Methods in Molecular Biology Series. Totowa, NJ: The Humana Press Inc; 2009:181 -206. doi:10.1007/978-1-60327-563-7_9.
Craine JM, Nippert JB. Cessation of burning dries soils long-term in a tallgrass prairie. Ecosystems. 2014;17:54 -65. doi:10.1007/s10021-013-9706-8.
McGinley MA. Central place foraging for non-food items: determination of the stick size value relationship of house building materials collected by eastern woodrats. The American Naturalist. 1984;123:841 -853. doi:http://www.jstor.org/stable/2460904.
Wilson KC, Dodds WK. Centimeter-scale stream substratum heterogeneity and metabolic rates. Hydrobiologia. 2009;623:53 -62. doi:10.1007/s10750-008-9647-y.
Kemp MJ, Dodds WK. Centimeter-scale patterns of oxygen concentrations related to nitrification in prairie stream substrate. Journal of the North American Benthological Society. 2001;20:347 -357. doi:10.2307/1468033.
Hulbert LC. Causes of fire effects in tallgrass prairie. Ecology. 1988;69:46 -58. doi:10.2307/1943159.
Smith MD. Causes and consequences of species invasion and loss: the role of dominant species and diversity in maintaining ecosystem function. 2002;PhD Dissertation:1 -148.
Williams EJ, Boyle WA. Causes and consequences of avian within-season dispersal decisions in a dynamic grassland environment. Animal Behaviour. 2019;155:77 - 87. doi:10.1016/j.anbehav.2019.06.009.
McMillan BR, Kaufman GA, Kaufman DW. A case of senescence for the white-footed mouse?. The Southwestern Naturalist. 1997;42:236 -237.
Rintoul DA, Krueger LM, Woodard C, Throne JE. Carrion beetles (Coleoptera: Silphidae) of the Konza Prairie Biological Stationbeetles (Coleoptera: Silphidae) of the Konza Prairie Biological Station. Journal of the Kansas Entomological Society. 2005;78:124 -123. doi:10.2317/0305.06.1.
Cerling TE, Quade J, Wang Y, Bowman JR. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature. 1989;341:138 -139. doi:10.2307/1940178.
Johnson WC, Willey KL, Macpherson GL. Carbon isotope variation in modern soils of the tallgrass prairie:Analogues for the interpretation of isotopicrecords derived from paleosols. Quaternary International. 2007;162-163:3 -20. doi:10.1016/j.quaint.2006.10.036.
Felton AJ, Knapp AK, Smith MD. Carbon exchange responses of a mesic grassland to an extreme gradient of precipitation. Oecologia. 2018:1 -12. doi:10.1007/s00442-018-4284-2.
Williams MA, Rice CW, Owensby CE. Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant and Soil. 2000;227:127 -137. doi:10.1023/A:1026590001307.
Fay PA, Carlisle JD, Danner BT, et al. Carbon and water relations of juvenile Quercus species in tallgrass prairie. Journal of Vegetation Science. 2001;12:807 -816. doi:10.2307/3236868.
Dodds WK, Marti E, Tank J, et al. Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. Oecologia. 2004;140:458 -467. doi:10.1007/s00442-004-1599-y.
Williams MA, Rice CW, Omay A, Owensby C. Carbon and nitrogen pools in a tallgrass prairie soil under elevated carbon dioxide. Soil Science Society of America Journal. 2004;68:148 -153. doi:10.2136/sssaj2004.1480.
Ajwa HA, Rice CW, Sotomayor D. Carbon and nitrogen mineralization in tallgrass prairie and agricultural soil profiles. Soil Science Society of America Journal. 1998;62:942 -951. doi:10.2136/sssaj1998.03615995006200040014x.
Garcia FO. Carbon and nitrogen dynamics and microbial ecology in tallgrass prairie. 1992;PhD Dissertation:1 -194.
Gilliam FS, Seastedt TR, Knapp AK. Canopy rainfall interception and throughfall in burned and unburned tallgrass prairie. The Southwestern Naturalist. 1987;32:267 -271. doi:10.2307/3671570.
Norman JM, Polley W. Canopy photosynthesis. In: Briggs WR Photosynthesis. Photosynthesis. New York, N.Y: Alan R. Liss, Inc; 1989:227 -241.
Gale WJ. Canopy net carbon dioxide exchange by burned and unburned tallgrass prairie. 1988;MS Thesis:1 -76. Available at: http://krex.k-state.edu/dspace/handle/2097/22236.
Seastedt TR. Canopy interception of nitrogen in bulk precipitation by annually burned and unburned tallgrass prairie. Oecologia. 1985;66:88 -92. doi:10.1007/BF00378557.
Gao J. Canopy chlorophyll estimation with hyperspectral remote sensing. 2006;PhD Dissertation:1 -192. Available at: http://hdl.handle.net/2097/252.
Mulholland PJ, Tank JL, Webster JR, et al. Can uptake length in streams be determined by nutrient addition experiments? Results from an inter-biome comparison study. Journal of the North American Benthological Society. 2002;21:544 -560. doi:10.2307/1468429.
Jumpponen A, Johnson LC. Can rDNA analyses of diverse fungal communities in soil and rootsdetect effects of environmental manipulations--a case study from tallgrass prairie. Mycologia. 2005;97:1177 -1194. doi:10.3852/mycologia.97.6.1177.
Commerford JL. Calibrating vegetation cover and pollen assemblages in the Flint Hills of Kansas, USA. 2010;MS Thesis. Available at: http://hdl.handle.net/2097/4170.
Reichman OJ. Caching behavior by eastern woodrats (Neotoma floridana ) in relation to food perishability. Animal Behavior. 1988;36:1525 -1532. doi:10.1016/S0003-3472(88)80223-9.

Pages