Konza LTER Publications
Export 812 results:
Author Title [ Type
Filters: First Letter Of Last Name is H [Clear All Filters]
Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution. 2018;2:50-56. doi:10.1038/s41559-017-0395-0.
Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution. 2018;2:50-56. doi:10.1038/s41559-017-0395-0.
Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution. 2018;2:50-56. doi:10.1038/s41559-017-0395-0.
Linking plant growth responses across topographic gradients in tallgrass prairie. Oecologia. 2011;166:1131 -1142. doi:10.1007/s00442-011-1948-6.
Linking knowledge among spatial and temporal scales: Vegetation, atmosphere, climate and remote sensing. Landscape Ecology. 1988;2:3 -22. doi:10.1007/BF00138905.
. Linking gene regulation, physiology, and plant biomass allocation in Andropogon gerardii in response to drought. Plant Ecology. 2018;219(1):1 - 15. doi:10.1007/s11258-017-0773-3.
. Linking changes in species composition and biomass in a globally distributed grassland experiment. Ecology Letters. 2022;25(12):2699-2712. doi:10.1111/ele.14126.
Linking changes in species composition and biomass in a globally distributed grassland experiment. Ecology Letters. 2022;25(12):2699-2712. doi:10.1111/ele.14126.
Linking changes in species composition and biomass in a globally distributed grassland experiment. Ecology Letters. 2022;25(12):2699-2712. doi:10.1111/ele.14126.
Life-history constraints in grassland plant species: a growth-defence trade-off is the norm. Ecology Letters. 2013;16(4):513 - 521. doi:10.1111/ele.12078.
Life-history constraints in grassland plant species: a growth-defence trade-off is the norm. Ecology Letters. 2013;16(4):513 - 521. doi:10.1111/ele.12078.
Life-history constraints in grassland plant species: a growth-defence trade-off is the norm. Ecology Letters. 2013;16(4):513 - 521. doi:10.1111/ele.12078.
Leaf-level responses to light and temperature in two co-occurring Quercus (Fagaceae ) species: implications for tree distribution patterns. Forest Ecology and Management. 1994;68:149 -159. doi:10.1016/0378-1127(94)90042-6.
. Landscape patterns in soil-water relations and primary production in tallgrass prairie. Ecology. 1993;74:549 -560. doi:10.2307/1939315.
. Land fragmentation under rapid urbanization: A cross-site analysis of Southwestern cities. Urban Ecosystems. 2011;14:429 -455. doi:10.1007/s11252-011-0157-8.
The keystone role of bison in North American tallgrass prairie. BioScience. 1999;49:39 -50. Available at: http://www.jstor.org/stable/10.1525/bisi.1999.49.1.39.
Invertebrates, ecosystem services and climate change. Biological Reviews. 2013;88:327 -348. doi:10.1111/brv.12002.
Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses. Mycorrhiza. 2012;22:327 -336. doi:10.1007/s00572-011-0407-x.
. Invasion of exotic plant species in tallgrass prairie fragments. Conservation Biology. 2003;17:990 -998. doi:10.1046/j.1523-1739.2003.02107.x.
. Invasion in space and time: non-native species richness and relative abundance respond to interannual variation in productivity and diversity. Ecology Letters. 2004;7:947 -957. doi:10.1111/j.1461-0248.2004.00655.x.
Invasibility of a mesic grassland depends on the time-scale of fluctuating resources. Journal of Ecology. 2015;103(6):1538 - 1546. doi:10.1111/1365-2745.12479.
. Into Africa: Promoting international ecological research and training in the developing world. Bulletin of the Ecological Society of America. 2010;91:202 -206. doi:10.1890/0012-9623-91.2.202.
. Interspecific variation in plant responses to mycorrhizal colonization in prairie grasses and forbs. American Journal of Botany. 1998;85:1732 -1738.
. Interspecific variation in bud banks and flowering effort among semi-arid African savanna grasses. South African Journal of Botany. 2012;83:127 -133. doi:10.1016/j.sajb.2012.08.010.
. Interspecific nutrient transfer in a tallgrass prairie plant community. American Journal of Botany. 1996;83:180 -184. Available at: http://www.jstor.org/stable/2445936.
. Interspecific nutrient transfer in a tallgrass prairie plant community. American Journal of Botany. 1996;83:180 -184. Available at: http://www.jstor.org/stable/2445936.
. Inter-regional comparison of land-use effects on stream metabolism. Freshwater Biology. 2010;55:1874 -1890. doi:10.1111/j.1365-2427.2010.02422.x.
Inter-regional comparison of land-use effects on stream metabolism. Freshwater Biology. 2010;55:1874 -1890. doi:10.1111/j.1365-2427.2010.02422.x.
Inter-regional comparison of land-use effects on stream metabolism. Freshwater Biology. 2010;55:1874 -1890. doi:10.1111/j.1365-2427.2010.02422.x.
Intermittent streamflow generation in a merokarst headwater catchment. Environmental Science: Advances. 2023;2:115-131. doi:10.1039/D2VA00191H.
. Inter-biome comparison of factors controlling stream metabolism. Freshwater Biology. 2001;46:1503 -1517. doi:10.1046/j.1365-2427.2001.00773.x.
The interactive effects of fire, bison (Bison bison) grazing and plant community composition in tallgrass prairie. American Midland Naturalist. 1993;129:10 -18. doi:10.2307/2426430.
. Interactive effects of burn regime and bison activity on tallgrass prairie vegetation. American Midland Naturalist. 2004;152:237 -247.
. Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass prairie. Oecologia. 1999;121:574 -582. doi:10.1007/s004420050964.
. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature. 2016;529(7586):390 - 393. doi:10.1038/nature16524.
Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature. 2016;529(7586):390 - 393. doi:10.1038/nature16524.
Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature. 2016;529(7586):390 - 393. doi:10.1038/nature16524.
Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature. 2016;529(7586):390 - 393. doi:10.1038/nature16524.
Integrating soil ecological knowledge into restoration management. Restoration Ecology. 2008;16:608 -617. doi:10.1111/j.1526-100X.2008.00477.x.
An integrated conceptual framework for long-term social-ecological research. Frontiers in Ecology and the Environment. 2011;9:351 -357. doi:10.1890/100068.
Influence of mycorrhizal fungi and fertilization on big bluestem seedling biomass. Journal of Range Management. 1989;42:213 -216. doi:10.2307/3899475.
. The influence of mycorrhizae on big bluestem rhizome regrowth and clipping tolerance. Journal of Range Management. 1990;43:286 -290. doi:10.2307/3898918.
. Indicators of plant species richness in AVIRIS spectra of a mesic grassland. Remote Sensing of Environment. 2005;98:304 -316. doi:10.1016/j.rse.2005.08.001.
. Increasing groundwater CO2 in a midcontinent tallgrass prairie: Controlling factors. . E3S Web of Conferences. 2019;98:06008. doi:10.1051/e3sconf/20199806008.
. Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology. 2021;102(2):e03218. doi:10.1002/ecy.3218.
Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology. 2021;102(2):e03218. doi:10.1002/ecy.3218.
Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology. 2021;102(2):e03218. doi:10.1002/ecy.3218.
Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology. 2021;102(2):e03218. doi:10.1002/ecy.3218.
Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology. 2021;102(2):e03218. doi:10.1002/ecy.3218.
Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Global Change Biology. 2005;11:322 -344. doi:10.1111/j.1365-2486.2005.00899.x.
.