Konza LTER Publications
The interactive effects of press/pulse intensity and duration on regime shifts at multiple scales. Ecological Monographs. 2017;87(2):198-218. doi:10.1002/ecm.1249.
. Intermittent streamflow generation in a merokarst headwater catchment. Environmental Science: Advances. 2023;2:115-131. doi:10.1039/D2VA00191H.
. Intra-annual rainfallvariability and grassland productivity: can the past predictthe future. Plant Ecology. 2006;184:65 -74. doi:10.1007/s11258-005-9052-9.
. Intra-canopy leaf trait variation facilitates high leaf area index and compensatory growth in a clonal woody-encroaching shrub. Tree Physiology. 2022;42(11):2186–2202. doi:10.1093/treephys/tpac078.
. Intraspecific trait variability in Andropogon gerardii, a dominant grass species in the US Great Plains. Frontiers in Ecology and Evolution. 2018. doi:10.3389/fevo.2018.00217.
. Kernel weight contribution to yield genetic gain of maize: a global review and US case studies. . Journal of Experimental Botany. 2022;73(11):3597 - 3609. doi:10.1093/jxb/erac103.
. Lack of eutrophication in a tallgrass prairie ecosystem over 27 years. Ecology. 2014;95:1225 -1235. doi:10.1890/13-1068.1.
. Life by the drop: Water as a physiological driver of the tallgrass prairie plant community. 2006;PhD Dissertation:1 -148. Available at: https://search.proquest.com/docview/305354527/?pq-origsite=primo.
. Linking plant growth responses across topographic gradients in tallgrass prairie. Oecologia. 2011;166:1131 -1142. doi:10.1007/s00442-011-1948-6.
Linking water uptake with rooting patterns in grassland species. Oecologia. 2007;153:261 -272. doi:10.1007/s00442-007-0745-8.
. Microanatomical traits track climate gradients for a dominant C4 grass species across the Great Plains, USA. Annals of Botany. 2020;mcaa146. doi:10.1093/aob/mcaa146.
. . N and P constrain C in ecosystems under climate change: role of nutrient redistribution, accumulation, and stoichiometry. Ecological Applications. 2022;32(8):e2684. doi:10.1002/eap.2684.
Patterns and ecological consequences of water uptake, redistribution, and loss in tallgrass prairie. 2016;PhD Dissertation. Available at: http://krex.k-state.edu/dspace/handle/2097/34514.
. Photosynthetic traits in C3 and C4 grassland species in mesocosm and field environments. Environmental and Experimental Botany. 2007;60:412 -420. doi:10.1016/j.envexpbot.2006.12.012.
. Physiological and anatomical trait variability of dominant C4 grasses. Acta Oecologica. 2018;93:14 - 20. doi:10.1016/j.actao.2018.10.007.
. Physiological and growth responses of switchgrass (Panicum virgatum L.) in native stands under passive air temperature manipulation. Global Change Biology-Bioenergy. 2013;5:683 -692. doi:10.1111/j.1757-1707.2012.01204.x.
. Physiological and morphological responses of grass species to drought. Department of Biology. 2017;MS Thesis. Available at: http://krex.k-state.edu/dspace/handle/2097/36188.
. Physiological drought tolerance and the structuring of tallgrass assemblages. Ecosphere. 2011;2:48 -. doi:10.1890/ES11-00023.1.
. Poor relationships between NEON Airborne Observation Platform data and field‐based vegetation traits at a mesic grassland. Ecology. 2022;103(2):e03590. doi:10.1002/ecy.v103.210.1002/ecy.3590.
Population origin and genome size do not impact Panicum virgatum (switchgrass) responses to variable precipitation. Ecosphere. 2013;4:37 -. doi:10.1890/ES12-00339.1.
. Positive feedbacks amplify rates of woody encroachment in mesic tallgrass prairie. Ecosphere. 2011;2:121 -. doi:10.1890/ES11-00212.1.
. Post-silking 15N labelling reveals an enhanced nitrogen allocation to leaves in modern maize (Zea mays) genotypes. Journal of Plant Physiology. 2022;268:153577. doi:10.1016/j.jplph.2021.153577.
. Potential ecological impacts of switchgrass (Panicum virgatum L.) biofuel cultivation in the Central Great Plains, USA. Biomass and Bioenergy. 2011;35:3415 -3421. doi:10.1016/j.biombioe.2011.04.055.
. Precipitation timing and grazer performance in a tallgrass prairie. Oikos. 2013;122:191 -198. doi:10.1111/j.1600-0706.2012.20400.x.
. Is a prescribed fire sufficient to slow the spread of woody plants in an infrequently burned grassland? A case study in tallgrass prairie. Rangeland Ecology & Management. 2021;78:79 - 89. doi:10.1016/j.rama.2021.05.007.
. Reintroducing bison results in long-running and resilient increases in grassland diversity. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES. 2022;119(36):e2210433119. doi:10.1073/pnas.2210433119.
Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences. 2011;8:3053 -3068. doi:10.5194/bg-8-3053-2011.
. Remotely sensed soil moisture can capture dynamics relevant to plant water uptake. Water Resources Research. 2023;59(2):e2022WR033814. doi:10.1029/2022WR033814.
Repeated clearing as a mechanism for savanna recovery following bush encroachment. Journal of Applied Ecology. 2024;61(7):1520-1530. doi:10.1111/1365-2664.14666.
. Responses of switchgrass (Panicum virgatum L.) to precipitation amount and temperature. 2011;MS Thesis. Available at: http://hdl.handle.net/2097/10720.
. Root characteristics of C-4 grasses limit reliance on deep soil water in tallgrass prairie. Plant and Soil. 2012;355:385 -394. doi:10.1007/s11104-011-1112-4.
. Root traits reveal safety and efficiency differences in grasses and shrubs exposed to different fire regimes. Functional Ecology. 2022;36(2):368 - 379. doi:10.1111/fec.v36.210.1111/1365-2435.13972.
. A safety vs efficiency trade-off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation. New Phytologist. 2016;210(1):97-107. doi:http://dx.doi.org/10.1111/nph.13781.
. Save or spend? Diverging water‐use strategies of grasses and encroaching clonal shrubs. Journal of Ecology. 2024;112(4):870-885. doi:10.1111/1365-2745.14276.
. Soil water partitioning contributes to species coexistence in tallgrass prairie. Oikos. 2007;116:1017 -1029. doi:10.1111/j.0030-1299.2007.15630.x.
. Spatial variation in soil microbial processes as a result of woody encroachment depends on shrub size in tallgrass prairie. Plant and Soil. 2021;460:359 - 373. doi:10.1007/s11104-020-04813-9.
. Spatio-temporal differences in leaf physiology are associated with fire, not drought, in a clonally integrated shrub. . AoB PLANTS. 2021;13(4):plab037. doi:10.1093/aobpla/plab037.
. State changes: insights from the U.S. Long Term Ecological Research Network. Ecosphere. 2021;12(5). doi:10.1002/ecs2.v12.510.1002/ecs2.3433.
Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance. Plant, Cell and Environment. 2014;37:132 -139. doi:10.1111/pce.12137.
. A study of grass structure and function in response to drought and grazing. Department of Biology. 2021;MS Thesis. Available at: https://krex.k-state.edu/dspace/handle/2097/41514.
. Tight coupling of leaf area index to canopy nitrogen and phosphorus across heterogeneous tallgrass prairie communities. Oecologia. 2016;182(3):889 - 898. doi:10.1007/s00442-016-3713-3.
. The timing of climate variability and grassland productivity. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:3401 -3405. doi:10.1111/j.1600-0706.2012.20400.x.
. Trajectories and state changes of a grassland stream and riparian zone after a decade of woody vegetation removal. Ecological Applications. 2023;33(4):e2830. doi:10.1002/eap.2830.
Unexpected hydrologic response to ecosystem state change in tallgrass prairie. Journal of Hydrology. 2024;643:131937. doi:10.1016/j.jhydrol.2024.131937.
The unique canopy structure, leaf morphology, and physiology of Cornus drummondii. Department of Biology. 2022;MS Thesis. Available at: https://krex.k-state.edu/dspace/handle/2097/42162.
. Using root and soil traits to forecast woody encroachment dynamics in mesic grassland.; 2023. doi:10.2172/2248061.
. Variation in gene expression of Andropogon gerardii in response to altered environmental conditions associated with climate change. Journal of Ecology. 2010;98:374 -383. doi:10.1111/j.1365-2745.2009.01618.x.
Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia. 2004;140:11 -25. doi:10.1007/s00442-004-1550-2.
Woody encroachment decreases diversity across North American grasslands and savannas. Ecology. 2012;93:697 -703. doi:10.1890/11-1199.1.
.