Konza LTER Publications
Export 987 results:
Author Title Type [ Year] Filters: First Letter Of Last Name is B [Clear All Filters]
Co-variation in methanotroph community composition and activity in three temperate grassland soils. Soil Biology and Biochemistry. 2016;95:78 - 86. doi:10.1016/j.soilbio.2015.12.014.
. Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions?. Ecology. 2016;97:561-568. doi:10.1890/15-1437.1.
. Drivers of variation in aboveground net primary productivity and plant community composition differ across a broad precipitation gradient. Ecosystems. 2016;19(3):521-533. doi:10.1007/s10021-015-9949-7.
. Drivers of variation in aboveground net primary productivity and plant community composition differ across a broad precipitation gradient. Ecosystems. 2016;19(3):521-533. doi:10.1007/s10021-015-9949-7.
. Ecohydrological and climate change studies at the Konza Prairie Biological Station. Transactions of the Kansas Academy of Science. 2016;119(1):5 - 11. doi:10.1660/062.119.0103.
. Ecohydrological and climate change studies at the Konza Prairie Biological Station. Transactions of the Kansas Academy of Science. 2016;119(1):5 - 11. doi:10.1660/062.119.0103.
. Environmental extremes drive plant and soil community dynamics of native and disturbed grasslands. 2016;MS Thesis. Available at: https://shareok.org/handle/11244/49188.
. Environmental heterogeneity has a weak effect on diversity during community assembly in tallgrass prairie. Ecological Monographs. 2016;86(1):94 - 106. doi:10.1890/15-0888.1.
. Environmental heterogeneity has a weak effect on diversity during community assembly in tallgrass prairie. Ecological Monographs. 2016;86(1):94 - 106. doi:10.1890/15-0888.1.
. Few multiyear precipitation–reduction experiments find a shift in the productivity–precipitation relationship. Global Change Biology. 2016;22(7):2570-2581. doi:10.1111/gcb.13269.
Few multiyear precipitation–reduction experiments find a shift in the productivity–precipitation relationship. Global Change Biology. 2016;22(7):2570-2581. doi:10.1111/gcb.13269.
Foraging decisions underlying restricted space use: effects of fire and forage maturation on large herbivore nutrient uptake. Ecology and Evolution. 2016;6(16):5843–5853 . doi:10.1002/ece3.2304.
. Grasshopper sparrows on the move: patterns and causes of within-season breeding dispersal in a declining grassland songbird. 2016;MS Thesis. Available at: http://krex.k-state.edu/dspace/handle/2097/32705.
. Increasing fish taxonomic and functional richness affects ecosystem properties of small headwater prairie streams. Freshwater Biology. 2016;61(6):887–898. doi:10.1111/fwb.12752.
. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature. 2016;529(7586):390 - 393. doi:10.1038/nature16524.
Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature. 2016;529(7586):390 - 393. doi:10.1038/nature16524.
Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature. 2016;529(7586):390 - 393. doi:10.1038/nature16524.
Methods of approximation influence aquatic ecosystem metabolism estimates. Limnology and Oceanography: Methods. 2016;14(9):557 - 569. doi:10.1002/lom3.10112.
. Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nature Climate Change. 2016;6:710-714. doi:10.1038/nclimate2942.
Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nature Climate Change. 2016;6:710-714. doi:10.1038/nclimate2942.
Quantifying global soil carbon losses in response to warming. Nature. 2016;540(7631):104 - 108. doi:10.1038/nature20150.
Quantifying global soil carbon losses in response to warming. Nature. 2016;540(7631):104 - 108. doi:10.1038/nature20150.
Quantifying global soil carbon losses in response to warming. Nature. 2016;540(7631):104 - 108. doi:10.1038/nature20150.
Quantifying global soil carbon losses in response to warming. Nature. 2016;540(7631):104 - 108. doi:10.1038/nature20150.
Rangeland responses to predicted increases in drought extremity. Rangelands . 2016;38:191-196. Available at: http://dx.doi.org/10.1016/j.rala.2016.06.009.
. The sensitivity of carbon exchanges in Great Plains grasslands to precipitation variability. Journal of Geophysical Research: Biogeosciences. 2016;121:280-294. doi:10.1002/2015JG003205.
Shared drivers but divergent ecological responses: Insights from long-term experiments in mesic savanna grasslands. BioScience. 2016;66(8):666 - 682. doi:10.1093/biosci/biw077.
Shared drivers but divergent ecological responses: Insights from long-term experiments in mesic savanna grasslands. BioScience. 2016;66(8):666 - 682. doi:10.1093/biosci/biw077.
Shared drivers but divergent ecological responses: Insights from long-term experiments in mesic savanna grasslands. BioScience. 2016;66(8):666 - 682. doi:10.1093/biosci/biw077.
Spatial and successional dynamics of microbial biofilm communities in a grassland stream ecosystem. Molecular Ecology. 2016;25(18):4674 - 4688. doi:10.1111/mec.13784.
. Stability of grassland soil C and N pools despite 25 years of an extreme climatic and disturbance regime. Journal of Geophysical Research: Biogeosciences. 2016;121(7):1934 - 1945. doi:10.1002/2016JG003370.
. A thermodynamic approach for assessing agroecosystem sustainability. Ecological Indicators. 2016;67:204-214. doi:10.1016/j.ecolind.2016.01.045.
. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proceedings of the National Academy of Sciences. 2016:201519620. doi:10.1073/pnas.1519620113.
Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proceedings of the National Academy of Sciences. 2016:201519620. doi:10.1073/pnas.1519620113.
Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology. 2015;96:1459 -1465. doi:http://dx.doi.org/10.1890/14-1902.1.
Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology. 2015;96:1459 -1465. doi:http://dx.doi.org/10.1890/14-1902.1.
Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States. Agricultural and Forest Meteorology. 2015;214-215:293 - 305. doi:10.1016/j.agrformet.2015.08.265.
Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States. Agricultural and Forest Meteorology. 2015;214-215:293 - 305. doi:10.1016/j.agrformet.2015.08.265.
Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States. Agricultural and Forest Meteorology. 2015;214-215:293 - 305. doi:10.1016/j.agrformet.2015.08.265.
Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States. Agricultural and Forest Meteorology. 2015;214-215:293 - 305. doi:10.1016/j.agrformet.2015.08.265.
Bison foraging responds to fire frequency in nutritionally heterogeneous grassland. Ecology. 2015;96:1586 -1597. doi:10.1890/14-2027.1.
. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences. 2015;112(35):10967 - 10972. doi:10.1073/pnas.1508382112.
Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences. 2015;112(35):10967 - 10972. doi:10.1073/pnas.1508382112.
Ecological hierarchy of foraging in a large herbivore: the plains bison perspective in tallgrass prairie. 2015;PhD. Dissertation. Available at: http://krex.k-state.edu/dspace/bitstream/handle/2097/20348/EdwardRaynor2015.pdf?sequence=1&isAllowed=y.
. Fire history reconstruction in grassland ecosystems: amount of charcoal reflects local area burned. Environmental Research Letters. 2015;10(11):114009. doi:10.1088/1748-9326/10/11/114009.
. Global environmental change and the nature of aboveground net primary productivity responses: insights from long-term experiments. Oecologia. 2015;177(4):935 - 947. doi:10.1007/s00442-015-3230-9.
Grassland productivity limited by multiple nutrients. Nature Plants. 2015;1(7):15080. doi:10.1038/nplants.2015.80.
Grassland productivity limited by multiple nutrients. Nature Plants. 2015;1(7):15080. doi:10.1038/nplants.2015.80.
Grassland productivity limited by multiple nutrients. Nature Plants. 2015;1(7):15080. doi:10.1038/nplants.2015.80.
Grassland productivity limited by multiple nutrients. Nature Plants. 2015;1(7):15080. doi:10.1038/nplants.2015.80.