Konza LTER Publications

Export 452 results:
Author [ Title(Asc)] Type Year
Filters: First Letter Of Last Name is R  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
W
Reisinger AJ, Blair JM, Rice CW, Dodds WK. Woody vegetation removal stimulates riparian and benthic denitrification in tallgrass prairie. Ecosystems. 2013;16:547 -560. doi:10.1007/s10021-012-9630-3.
Reisinger AJ, Blair JM, Rice CW, Dodds WK. Woody vegetation removal stimulates riparian and benthic denitrification in tallgrass prairie. Ecosystems. 2013;16:547 -560. doi:10.1007/s10021-012-9630-3.
Ratajczak Z, Nippert JB, Collins SL. Woody encroachment decreases diversity across North American grasslands and savannas. Ecology. 2012;93:697 -703. doi:10.1890/11-1199.1.
Ratajczak Z, Ladwig L. Will climate change push grasslands past critical thresholds?. In: Gibson D, Newman J Grasslands and Climate Change. Grasslands and Climate Change. Cambridge, UK.: British Ecological Society and Cambridge University Press; 2019:98 - 114. Available at: https://www.cambridge.org/core/books/grasslands-and-climate-change/will-climate-change-push-grasslands-past-critical-thresholds/368C9316D9C5A8A3C6B6881779BA5EB5.
Ren H, Zhang Y, Gui W, et al. What drives grassland ecosystem multifunctionality: Grazing pressure or plant community parameters?. Functional Ecology. In Press.
Mino L, Kolp MR, Fox S, Reazin C, Zeglin LH, Jumpponen A. Watershed and fire severity are stronger determinants of soil chemistry and microbiomes than within-watershed woody encroachment in a tallgrass prairie system. FEMS Microbiology Ecology. 2021;97(12):fiab154. doi:10.1093/femsec/fiab154.
Wolf S, Keenan TF, Fisher JB, et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proceedings of the National Academy of Sciences. 2016:201519620. doi:10.1073/pnas.1519620113.
T
Chase ID, Rohwer S. Two methods for quantifying the development of dominance hierarchies in large groups with applications to Harris' sparrows. Animal Behavior. 1987;35:1113 -1118. doi:10.1016/S0003-3472(87)80168-9.
Dodds WK, Ratajczak Z, Keen RM, et al. Trajectories and state changes of a grassland stream and riparian zone after a decade of woody vegetation removal. Ecological Applications. 2023;33(4):e2830. doi:10.1002/eap.2830.
Morisette JT, Richardson AD, Knapp AK, et al. Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Frontiers in Ecology and the Environment. 2009;7:253 -260. doi:10.1890/070217.
Roth TC, Pravosudov VV. Tough times call for bigger brains. Communicative and Integrative Biology. 2009;2:1 -3. doi:10.4161/cib.2.3.8099.
Majetic CJ, Wiggam SD, Ferguson CJ, Raguso RA. Timing is everything: temporal variation in floral scent, and its connections to pollinator behavior and female reproductive success in Phlox divaricata. American Midland Naturalist. 2015;173:191 -207. doi:10.1674/amid-173-02-191-207.1.
Shuman TW, Robel RJ, Kemp KE, Zimmerman JL. Time budgets of confined nothern cardinals and Harris' sparrows in flocks and differences in observer data. Journal of Field Ornithology. 1992;63:129 -137. doi:http://www.jstor.org/stable/4513677.
Klodd AE, Nippert JB, Ratajczak Z, Waring H, Phoenix GK. Tight coupling of leaf area index to canopy nitrogen and phosphorus across heterogeneous tallgrass prairie communities. Oecologia. 2016;182(3):889 - 898. doi:10.1007/s00442-016-3713-3.
Rocci KS, Bird M, Blair JM, Knapp AK, Liang C, M. Cotrufo F. Thirty years of increased precipitation modifies soil organic matter fractions but not bulk soil carbon and nitrogen in a mesic grassland. Soil Biology and Biochemistry. 2023;185:109145. doi:10.1016/j.soilbio.2023.109145.
Blair JM, Seastedt TR, Rice CW, Ramundo RA. Terrestrial nutrient cycling in tallgrass prairie. In: Knapp AK, Briggs JM, Hartnett DC, Collins SL Grassland Dynamics: Long-term Ecological Research. Grassland Dynamics: Long-term Ecological Research. New York: Oxford University Press; 1998:222 -243.
Blair JM, Seastedt TR, Rice CW, Ramundo RA. Terrestrial nutrient cycling in tallgrass prairie. In: Knapp AK, Briggs JM, Hartnett DC, Collins SL Grassland Dynamics: Long-term Ecological Research. Grassland Dynamics: Long-term Ecological Research. New York: Oxford University Press; 1998:222 -243.
Rogers WE, Hartnett DC. Temporal vegetation dynamics and recolonization mechanisms on different-sized soil disturbances in tallgrass prairie. American Journal of Botany. 2001;88:1634 -1642. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21669697.
Avolio ML, Wilcox KR, La Pierre KJ, et al. Temporal variability in production is not consistently affected by global change drivers across herbaceous-dominated ecosystems. Oecologia. 2020;194:735–744.
Raynor EJ, Joern A, Skibbe AM, et al. Temporal variability in large grazer space use in an experimental landscape. Ecosphere. 2017;8(1). doi:10.1002/ecs2.1674.
Wilfahrt PA, Asmus AL, Seabloom EW, et al. Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology. 2021;102(11). doi:10.1002/ecy.3504.
S
Vázquez E, Borer ET, Bugalho MN, et al. The synergistic response of primary production in grasslands to combined nitrogen and phosphorus addition is caused by increased nutrient uptake and retention. Plant and Soil. 2023. doi:10.1007/s11104-023-06083-7.
Jones JA, Groffman PM, Blair JM, et al. Synergies among environmental science research and monitoring networks: A research agenda. Earth's Future. 2021;9(3):e2020EF001631. doi:10.1029/2020EF001631.
Jones JA, Groffman PM, Blair JM, et al. Synergies among environmental science research and monitoring networks: A research agenda. Earth's Future. 2021;9(3):e2020EF001631. doi:10.1029/2020EF001631.
Jones JA, Groffman PM, Blair JM, et al. Synergies among environmental science research and monitoring networks: A research agenda. Earth's Future. 2021;9(3):e2020EF001631. doi:10.1029/2020EF001631.
Dodds WK, Robinson CT, Gaiser EE, et al. Surprises and insights from long-term aquatic datasets and experiments. BioScience. 2012;62:709 -721. doi:10.1525/bio.2012.62.8.4.
Welti EAR, Joern A, Ellison AM, et al. Studies of insect temporal trends must account for the complex sampling histories inherent to many long-term monitoring efforts. Nature Ecology & Evolution. 2021;5:589–591. doi:10.1038/s41559-021-01424-0.
Welti EAR, Joern A, Ellison AM, et al. Studies of insect temporal trends must account for the complex sampling histories inherent to many long-term monitoring efforts. Nature Ecology & Evolution. 2021;5:589–591. doi:10.1038/s41559-021-01424-0.
Meyer JL, Crocker T, D'Angelo D, et al. Stream Research in the LTER Network. Seattle, WA: LTER Network LTER publication no. 15; 1993:114 -.
Rawitch MJ. Stream CO2 degassing: review of methods and laboratory validation of floating chambers. 2016;MS Thesis. Available at: https://kuscholarworks.ku.edu/bitstream/handle/1808/21889.
Jackson WM, Rohwer S, Winnegrad RL. Status signaling is absent within age-and-sex classes of Harris' Sparrows. The Auk. 1988;105:424 -427. doi:http://www.jstor.org/stable/4087436.
Zinnert JC, Nippert JB, Rudgers JA, et al. State changes: insights from the U.S. Long Term Ecological Research Network. Ecosphere. 2021;12(5). doi:10.1002/ecs2.v12.510.1002/ecs2.3433.
Kosciuch KL, Rivers JW, Sandercock BK. Stable isotopes identify the natal origins of a generalist brood parasite, the brown‐headed cowbird Molothrus ater. Journal of AvianBiology. 2008;39:364 -367. doi:10.1111/j.0908-8857.2008.04170.x.
Reed AW, Kaufman GA, Kaufman DW. Species richness- productivity relationship for small mammals along a desert-grassland continuum: differential responses of functional groups. Journal of Mammalogy. 2006;87:777 -783. doi:10.1644/05-MAMM-A-253R2.1.
Cleland EE, Clark CM, Collins SL, et al. Species responses to nitrogen fertilization in herbaceous plant communities, and associated species traits. Ecology. 2008;89:1175 -. doi:10.1890/07-1104.1.
Jones SK, Ripplinger J, Collins SL. Species reordering, not changes in richness, drives long-term dynamics in grassland communities. Coulson T. Ecology Letters. 2017;20(12):1565. doi:10.1111/ele.12864.
Seabloom EW, Batzer E, Chase JM, et al. Species loss due to nutrient addition increases with spatial scale in global grasslands. Haddad N. Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Seabloom EW, Batzer E, Chase JM, et al. Species loss due to nutrient addition increases with spatial scale in global grasslands. Haddad N. Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Leslie JF, Zeller KA, Logrieco A, Mule G, Moretti A, Ritieni A. Species diversity of and toxin production by Gibberella fujikuroi species complex strains isolated from native prairie grasses in Kansas. Applied and Environmental Microbiology. 2004;70:2254 -2262. doi:10.1128/AEM.70.4.2254-2262.2004.
Hodapp D, Borer ET, W. Harpole S, et al. Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. Gurevitch J. Ecology Letters. 2018;21(9):1364 -1371. doi:10.1111/ele.13102.

Pages