Konza LTER Publications

Export 345 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is D  [Clear All Filters]
2020
Andriuzzi WS, Franco ALC, Ankrom KE, et al. Body size structure of soil fauna along geographic and temporal gradients of precipitation in grasslands. Soil Biology and Biochemistry. 2020;140:107638. doi:10.1016/j.soilbio.2019.107638.
Welti EAR, Prather RM, Sanders NJ, deBeurs KM, Kaspari M. Bottom‐up when it is not top‐down: Predators and plants control biomass of grassland arthropods. Journal of Animal Ecology. 2020;89(5). doi:10.1111/1365-2656.13191.
Smith MD, Koerner SE, Knapp AK, et al. Mass ratio effects underlie ecosystem responses to environmental change. Journal of Ecology. 2020;108(3):855-864. doi:10.1111/1365-2745.13330.
Smith MD, Koerner SE, Knapp AK, et al. Mass ratio effects underlie ecosystem responses to environmental change. Journal of Ecology. 2020;108(3):855-864. doi:10.1111/1365-2745.13330.
Welti EL, Roeder KA, de Beurs KM, Joern A, Kaspari M. Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proceedings of the National Academy of Sciences. 2020;117(13):7271-7275. doi:10.1073/pnas.1920012117.
LeRoy CJ, Hipp AL, Lueders K, et al. Plant phylogenetic history explains in‐stream decomposition at a global scale. Wardle D. Journal of Ecology. 2020;108(1):17-35. doi:10.1111/1365-2745.13262.
Li J, Xie S, Wilson GT, et al. Plant–microbial interactions facilitate grassland species coexistence at the community level. Oikos. 2020;129(4):533-543. doi:10.1111/oik.06609.
2019
Chen M, Parton WJ, Hartman MD, et al. Assessing precipitation, evapotranspiration, and NDVI as controls of U.S. Great Plains plant production. Ecosphere. 2019;10(10):e02889. doi:10.1002/ecs2.2889.
Chen M, Parton WJ, Hartman MD, et al. Assessing precipitation, evapotranspiration, and NDVI as controls of U.S. Great Plains plant production. Ecosphere. 2019;10(10):e02889. doi:10.1002/ecs2.2889.
Cleland EE, Lind EM, DeCrappeo NM, et al. Belowground biomass response to nutrient enrichment depends on light limitation across globally distributed grasslands. Ecosystems. 2019;22(7):1466–1477. doi:10.1007/s10021-019-00350-4.
Cleland EE, Lind EM, DeCrappeo NM, et al. Belowground biomass response to nutrient enrichment depends on light limitation across globally distributed grasslands. Ecosystems. 2019;22(7):1466–1477. doi:10.1007/s10021-019-00350-4.
Cleland EE, Lind EM, DeCrappeo NM, et al. Belowground biomass response to nutrient enrichment depends on light limitation across globally distributed grasslands. Ecosystems. 2019;22(7):1466–1477. doi:10.1007/s10021-019-00350-4.
Galbreath KE, Hoberg EP, Cook JA, et al. Building an integrated infrastructure for exploring biodiversity: field collections and archives of mammals and parasites. Journal of Mammalogy. 2019;100(2):382 - 393. doi:10.1093/jmammal/gyz048.
Galbreath KE, Hoberg EP, Cook JA, et al. Building an integrated infrastructure for exploring biodiversity: field collections and archives of mammals and parasites. Journal of Mammalogy. 2019;100(2):382 - 393. doi:10.1093/jmammal/gyz048.
Duell EB, Zaiger K, Bever JD, Wilson GT. Climate affects plant-soil feedback of native and invasive grasses: negative feedbacks in stable but not in variable environments. Frontiers in Ecology and Evolution. 2019;7. doi:10.3389/fevo.2019.00419.
Dodds WK, Bruckerhoff LA, Batzer D, et al. The freshwater biome gradient framework: predicting macroscale properties based on latitude, altitude, and precipitation. Ecosphere. 2019;10(7):e02786. doi:10.1002/ecs2.2786.
Dodds WK, Whiles MR. Freshwater ecology: concepts and environmental applications of limnology. 3rd ed. Elsevier; 2019:998. Available at: https://www.elsevier.com/books/freshwater-ecology/dodds/978-0-12-813255-5.
Komatsu KJ, Avolio ML, Lemoine NP, et al. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences. 2019;116(36):17867-17873. doi:10.1073/pnas.1819027116.
Tiegs SD, Costello DM, Isken MW, et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances. 2019;5(1):eaav0486. doi:10.1126/sciadv.aav0486.
Tiegs SD, Costello DM, Isken MW, et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances. 2019;5(1):eaav0486. doi:10.1126/sciadv.aav0486.
Tiegs SD, Costello DM, Isken MW, et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances. 2019;5(1):eaav0486. doi:10.1126/sciadv.aav0486.
Tiegs SD, Costello DM, Isken MW, et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances. 2019;5(1):eaav0486. doi:10.1126/sciadv.aav0486.
Tiegs SD, Costello DM, Isken MW, et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances. 2019;5(1):eaav0486. doi:10.1126/sciadv.aav0486.
Tiegs SD, Costello DM, Isken MW, et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances. 2019;5(1):eaav0486. doi:10.1126/sciadv.aav0486.
Tiegs SD, Costello DM, Isken MW, et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances. 2019;5(1):eaav0486. doi:10.1126/sciadv.aav0486.
Sullivan PL, Stops MW, Macpherson GL, Li L, Hirmas DR, Dodds WK. How landscape heterogeneity governs stream water concentration-discharge behavior in carbonate terrains (Konza Prairie, USA). Chemical Geology. 2019;527(20):118989. doi:10.1016/j.chemgeo.2018.12.002.
Wurtsbaugh WA, Paerl HW, Dodds WK. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIRES Water. 2019;6(5):e1373. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/wat2.1373.
Fletcher RJ, Hefley TJ, Robertson EP, Zuckerberg B, McCleery RA, Dorazio RM. A practical guide for combining data to model species distributions. Ecology. 2019;81:e02710. doi:10.1002/ecy.2710.
Larson DM, Dodds WK, Veach AM. Removal of woody riparian vegetation substantially altered a stream ecosystem in an otherwise undisturbed grassland watershed. Ecosystems. 2019;22(1):64 - 76. doi:10.1007/s10021-018-0252-2.
Rice CW, Zimmermann S, Ochoa-Hueso R, et al. Soil net nitrogen mineralisation across global grasslands. Nature Communications. 2019;10(4981). doi:10.1038/s41467-019-12948-2.
Rice CW, Zimmermann S, Ochoa-Hueso R, et al. Soil net nitrogen mineralisation across global grasslands. Nature Communications. 2019;10(4981). doi:10.1038/s41467-019-12948-2.
McGowan AR, Nicoloso RS, Diop HE, Roozeboom KL, Rice CW. Soil organic carbon, aggregation, and microbial community Structure in annual and perennial biofuel crops. Agronomy Journal. 2019;111(13):128 - 142. doi:10.2134/agronj2018.04.0284.
2018
Wu D, Ciais P, Viovy N, et al. Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences. 2018;15(11):3421 - 3437. doi:10.5194/bg-15-3421-2018.
Koerner SE, Smith MD, Burkepile DE, et al. Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution. 2018;2:1925-1932. doi:https://doi.org/10.1038/s41559-018-0696-y.
Koerner SE, Smith MD, Burkepile DE, et al. Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution. 2018;2:1925-1932. doi:https://doi.org/10.1038/s41559-018-0696-y.
Koerner SE, Smith MD, Burkepile DE, et al. Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution. 2018;2:1925-1932. doi:https://doi.org/10.1038/s41559-018-0696-y.
Koerner SE, Smith MD, Burkepile DE, et al. Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution. 2018;2:1925-1932. doi:https://doi.org/10.1038/s41559-018-0696-y.
Hristov AN, Johnson JMF, Rice CW, et al. Chapter 5: Agriculture. In: Cavallaro N, Shrestha G, Mayes MA, et al. Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. U.S. Global Change Research Program; 2018:229 - 263. doi:10.7930/SOCCR2.2018.Ch5.
Song C, Dodds WK, Rüegg J, et al. Continental-scale decrease in net primary productivity in streams due to climate warming. Nature Geoscience. 2018;11(6):415 - 420. doi:10.1038/s41561-018-0125-5.
Song C, Dodds WK, Rüegg J, et al. Continental-scale decrease in net primary productivity in streams due to climate warming. Nature Geoscience. 2018;11(6):415 - 420. doi:10.1038/s41561-018-0125-5.
Vero SE, Macpherson GL, Sullivan PL, et al. Developing a conceptual framework of landscape and hydrology on Tallgrass Prairie:a critical zone approach. Vadose Zone Journal. 2018;17(1):1 - 11. doi:10.2136/vzj2017.03.0069.
Higgs S. Dissolved organic carbon dynamics in tallgrass prairie streams. 2018;MS Thesis. Available at: http://krex.k-state.edu/dspace/handle/2097/39153.
Ochoa-Hueso R, Collins SL, Delgado-Baquerizo M, et al. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Global Change Biology. 2018;24(7):2818 - 2827. doi:10.1111/gcb.2018.24.issue-710.1111/gcb.14113.
Griffin-Nolan RJ, Carroll CJW, Denton EM, et al. Legacy effects of a regional drought on aboveground net primary production in six central US grasslands. Plant Ecology. 2018;219(5):505 - 515. doi:10.1007/s11258-018-0813-7.
Hautier Y, Isbell F, Borer ET, et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution. 2018;2:50-56. doi:10.1038/s41559-017-0395-0.
Hautier Y, Isbell F, Borer ET, et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution. 2018;2:50-56. doi:10.1038/s41559-017-0395-0.
Hautier Y, Isbell F, Borer ET, et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution. 2018;2:50-56. doi:10.1038/s41559-017-0395-0.
Ricono A, Dixon R, Eaton I, et al. Long- and short-term responses of Asclepias species differ in respect to fire, grazing, and nutrient addition. American Journal of Botany. 2018;105(12):2008-2017. doi:10.1002/ajb2.2018.105.issue-1210.1002/ajb2.1197.

Pages