Bud bank dynamics and clonal growth strategy in the rhizomatous grass Pascopyrum smithii

TitleBud bank dynamics and clonal growth strategy in the rhizomatous grass Pascopyrum smithii
Publication TypeJournal Article
Year of Publication2015
AuthorsOtt, JP, Hartnett, DC
JournalPlant Ecology
Pagination395 -405
Accession NumberKNZ001692
KeywordsBud, Guerilla, Phalanx Rhizome, Vegetative reproduction, Western wheatgrass

Recruitment of rhizomatous perennial grass ramets primarily occurs from the belowground bud bank. Investment in guerilla versus phalanx growth is determined by bud availability, development, and spatial distribution. The tiller and bud bank dynamics of Pascopyrum smithii, a dominant rhizomatous grass of the northern mixed-grass prairie, were examined in South Dakota throughout an annual cycle to assess the investment in guerilla versus phalanx growth and the role of different bud populations in renewal versus regenerative functions and vegetative spread via rhizomes. Pascopyrum smithii invested substantially in both phalanx and guerilla tiller production. However, investment in rhizome production before tiller recruitment prioritized guerilla over phalanx growth. Annual tiller recruitment of P. smithii was capable of flexible timing, occurring in either spring or fall. Renewal buds, from which rhizomes and tillers were recruited, primarily consisted of the youngest generation of buds borne at the base of tillers. Although rhizome axillary buds and older tiller axillary buds were rarely used in annual tiller recruitment, they provided a sizable reserve (regenerative) bud bank. The spatial distribution of bud development produced the mixed guerrilla–phalanx growth pattern and flexible tiller recruitment timing of P. smithii. Therefore, P. smithii is capable of employing both conservative and foraging growth strategies which will facilitate its persistence under local neighborhood variability and changing resource availability associated with environmental change. Understanding the spatial distribution of buds as determined by rhizome architecture is essential to understanding the distribution and composition of species within plant communities dominated by clonal species.