Insect herbivore outbreaks views through a physiological framework: insights from Orthoptera

TitleInsect herbivore outbreaks views through a physiological framework: insights from Orthoptera
Publication TypeBook Chapter
Year of Publication2012
AuthorsBehmer, ST, Joern, A
EditorBarbosa, P, Letourneau, D, Agrawaal, A
Book TitleInsect Outbreaks Revisited
PublisherAcademic Press, San Diego
Accession NumberKNZ001478

Insect herbivore outbreaks, particularly orthopteran outbreaks, have plagued humans throughout recorded history. The Egyptian locust swarm described in the Old Testament is perhaps the most famous orthopteran outbreak story. Two species, the African desert locust (Schistocerca gregaria Forskål) and the migratory locust (Locusta migratoria (Linnaeus)), still outbreak regularly throughout large expanses of Africa and the Middle East. The most likely villain in the biblical swarm was the African desert locust, based on the broad array of the food plants described in the story. In contrast to the desert locust, the migratory locust is a specialist that feeds only on grasses. However, despite its restricted diet, the migratory locust has a larger geographic range, extending from all of northern and central Africa across to eastern China. It too has greatly impacted human society throughout historical time, especially in China. Parenthetically, the Chinese character for locust is composed of two parts, insect (虫) and emperor (皇); this character combination indicates the power of locusts – it was an insect capable of threatening an emperor’s supremacy. In China’s 5000-year history, 842 locust plagues have been recorded, with the earliest ones being described in the Book of Songs (770–476 BCE). How locust outbreaks endangered regimes and changed the destiny of China is also described in two other important ancient Chinese books – Zizhi Tongjian (which covers Chinese history from 403 BCE to 959 CE, including 16 dynasties) and Ch’ien Han Shu (which covers Chinese history from 206 BCE to 25 CE). Although the recorded histories of Australia and the Americas are more recent, orthopteran outbreaks have a long history on these continents as well. The first recorded outbreak of the Australian plague locust (Chortoicetes terminifera (Walker)) was in 1844, followed by outbreaks from the 1870s onward (including multiple outbreaks in the early 2000s, most of which were controlled by the Australian Plague Locust Commission (Hunter 2004)). In the United States, massive outbreaks of the Rocky Mountain locust (Melanoplus spretus (Walsh)) were recorded in the 1870s. The largest of the swarms covered a “swath equal to the combined areas of Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island and Vermont” (Riley et al. 1880), and nearly derailed westward expansion. Charles Valentine Riley, now considered one of the founding fathers of entomology in the United States, was appointed by the US government to investigate these outbreaks. His work led him to request further federal assistance, which the government provided in the form of the US Entomological Commission; this agency quickly morphed into the US Department of Agriculture that still operates today. The last known Rocky Mountain locust swarm occurred in the very early 1900s; why it disappeared remains a mystery, although some interesting hypotheses have been proposed (Lockwood 2005). The Mormon cricket (Anabrus simplex (Haldeman)) is another orthopteran species renowned for its outbreaks. Populations of Mormon crickets usually occur at low densities throughout most of their range in western North America, but population explosions that exceed more than 1 million individuals, marching in roving bands at densities of more than 100 individuals/m2 , are not uncommon. In 1848 a Mormon cricket outbreak nearly thwarted the settlement of Salt Lake City, Utah, by Mormon pioneers. Although the story is controversial, Mormon folklore recounts the miracle of the gulls. Legend claims that legions of seagulls, sent by God, appeared on June 9, 1848. These seagulls saved the settler’s crops by eating all the crickets. South America and Central America also have orthopterans that show outbreak dynamics, the most notable being Schistocerca cancellata (Serville) and Schistocerca piceifrons (Walker), respectively. Given the devastation and immense suffering inflicted on humans by orthopteran outbreaks, it is pressing to understand the causal factors that contribute to their outbreaks. With the exception of Mormon crickets (see Sword 2005), the orthopterans described above exhibit phase polyphenism – defined by Hardie and Lees (1985, 473) as “occurrence of two or more distinct phenotypes which can be induced in individuals of the same genotype by extrinsic factors.” The African desert locust and African migratory locust are easily two of the best-known species to practice phase polyphenism. However, many orthopterans that do not exhibit phase polyphenism can also undergo outbreaks, as has been the case for many grasshopper species in the western United States (Branson et al. 2006). In this chapter we concentrate primarily on orthopterans, but our aim is to understand factors that contribute to insect herbivore outbreaks more generally. We also discuss other types of insects, particularly lepidopterans, to make our points. Because insect outbreaks cannot happen without an initial increase in population size, we begin by focusing on individuals while considering factors, especially nutritional ones, that contribute to increased performance. We next explore how behavior and performance (e.g., survival, growth, and reproduction) of individual insect herbivores change as population densities increase. Shifting gears, we then discuss how ecological paradigms, particularly the “plant stress hypothesis,” have influenced how we view insect herbivore outbreaks. We conclude the chapter by calling for an integrative approach that translates individual responses into group-level phenomena, couched within the contexts of their communities and ecosystems.