Microbial responses to nitrogen addition in three contrasting grassland ecosystems

TitleMicrobial responses to nitrogen addition in three contrasting grassland ecosystems
Publication TypeJournal Article
Year of Publication2007
AuthorsZeglin, LH, Stursova, M, Sinsabaugh, RL, Collins, SL
Pagination349 -359
Accession NumberKNZ001136
KeywordsExtracellular enzyme activity, Soil carbon

The effects of global N enrichment on soil processes in grassland ecosystems have received relatively little study. We assessed microbial community response to experimental increases in N availability by measuring extracellular enzyme activity (EEA) in soils from three grasslands with contrasting edaphic and climatic characteristics: a semiarid grassland at the Sevilleta National Wildlife Refuge, New Mexico, USA (SEV), and mesic grasslands at Konza Prairie, Kansas, USA (KNZ) and Ukulinga Research Farm, KwaZulu-Natal, South Africa (SAF). We hypothesized that, with N enrichment, soil microbial communities would increase C and P acquisition activity, decrease N acquisition activity, and reduce oxidative enzyme production (leading to recalcitrant soil organic matter [SOM] accumulation), and that the magnitude of response would decrease with soil age (due to higher stabilization of enzyme pools and P limitation of response). Cellulolytic activities followed the pattern predicted, increasing 35–52% in the youngest soil (SEV), 10–14% in the intermediate soil (KNZ) and remaining constant in the oldest soil (SAF). The magnitude of phosphatase response did not vary among sites. N acquisition activity response was driven by the enzyme closest to its pH optimum in each soil: i.e., leucine aminopeptidase in alkaline soil, β-N-acetylglucosaminidase in acidic soil. Oxidative enzyme activity varied widely across ecosystems, but did not decrease with N amendment at any site. Likewise, SOM and %C pools did not respond to N enrichment. Between-site variation in both soil properties and EEA exceeded any treatment response, and a large portion of EEA variability (leucine aminopeptidase and oxidative enzymes), 68% as shown by principal components analysis, was strongly related to soil pH (r = 0.91, P < 0.001). In these grassland ecosystems, soil microbial responses appear constrained by a molecular-scale (pH) edaphic factor, making potential breakdown rates of SOM resistant to N enrichment.