Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum

TitleNutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum
Publication TypeJournal Article
Year of Publication2019
AuthorsWurtsbaugh, WA, Paerl, HW, Dodds, WK
JournalWIRES Water
Accession NumberKNZ001978

Agricultural, urban and industrial activities have dramatically increased aquatic nitrogen and phosphorus pollution (eutrophication), threatening water quality and biotic integrity from headwater streams to coastal areas world‐wide. Eutrophication creates multiple problems, including hypoxic “dead zones” that reduce fish and shellfish production; harmful algal blooms that create taste and odor problems and threaten the safety of drinking water and aquatic food supplies; stimulation of greenhouse gas releases; and degradation of cultural and social values of these waters. Conservative estimates of annual costs of eutrophication have indicated $1 billion losses for European coastal waters and $2.4 billion for lakes and streams in the United States. Scientists have debated whether phosphorus, nitrogen, or both need to be reduced to control eutrophication along the freshwater to marine continuum, but many management agencies worldwide are increasingly opting for dual control. The unidirectional flow of water and nutrients through streams, rivers, lakes, estuaries and ultimately coastal oceans adds additional complexity, as each of these ecosystems may be limited by different factors. Consequently, the reduction of just one nutrient upstream to control eutrophication can allow the export of other nutrients downstream where they may stimulate algal production. The technology exists for controlling eutrophication, but many challenges remain for understanding and managing this global environmental problem.