Tallgrass prairie

Tallgrass prairie

WAT03 Climate legacy effects shape tallgrass prairie nitrogen cycling


Climate change is expected to shift precipitation regimes in the North American Central Plains with likely impacts on ecosystem functioning. In tallgrass prairies, water and nitrogen (N) can co-limit ecosystem processes, so changes in precipitation may have complex effects on carbon (C) and N cycling. Rates of N supply such as N mineralization and nitrification respond differently to short- and long-term patterns in water availability, and previous climate patterns may exert legacy effects on current N cycling that could alter ecosystem sensitivity to current precipitation regimes. We used a long-term precipitation manipulation at Konza Prairie (Kansas, USA) to assess how previous and current precipitation influence tallgrass prairie N cycling. Supplemental irrigation was applied across upland and lowland prairie for ~25 years to reduce water deficits; in 2017, we reversed some of these treatments and added a reduced rainfall treatment across both historic rainfall regimes, allowing us to assess how previous climate and current rainfall patterns interact to shape N cycling. In lowland prairie, previous irrigation doubled N mineralization and nitrification rates the year following cessation of irrigation. Reduced microbial C/N ratio and lower relative investment in N-acquiring enzymes in previously irrigated lowlands suggested that a wetter climate created a legacy of increased N availability for microbes. Internal plant N resorption increased under short-term irrigation but recovered to ambient levels following previous irrigation. Together, these results suggest that a history of wetter conditions prairie can create a legacy of accelerated N cycling and with consequences for both plant and microbial functioning.

Core Areas: 

Data set ID: 



Short name: 


Data sources: 


To assess how legacies of past precipitation regimes influence tallgrass prairie N cycling under new precipitation regimes, we modified a long-term irrigation experiment that simulated a wetter climate for >25 years. We reversed irrigated and control (ambient precipitation) treatments in some plots and imposed an experimental drought in plots with a history of irrigation or ambient precipitation to assess how climate legacies affect N pools and fluxes. Response variables included inorganic N pools, net N mineralization and nitrification, microbial biomass N and extracellular enzyme activity potentials, and seasonal plant N concentration patterns. For additional details see: Broderick, C.A., K.M. Freeman, L.H. Zeglin, and J.M. Blair. 2022. Climate legacy effects shape tallgrass prairie nitrogen cycling. Journal of Geophysical Research: Biogeosciences 127, e2022JG006972, doi.org/10.1029/2022JG006972.



Subscribe to RSS - Tallgrass prairie