Grazing management effects on plant species diversity in tallgrass prairie

TitleGrazing management effects on plant species diversity in tallgrass prairie
Publication TypeJournal Article
Year of Publication2004
AuthorsHickman, KR, Hartnett, DC, Cochran, RC, Owensby, CE
JournalJournal of Range Management
Pagination58 -65
Accession NumberKNZ00879
KeywordsBiodiversity, cattle grazing, Flint Hills, grazing systems, plant ecology, range management, stocking rates

A 6-year study was conducted in tallgrass prairie to assess the effects of grazing management (cattle stocking densities and grazing systems) on plant community composition and diversity. Treatments included sites grazed season-long (May to October) at 3 stocking densities (3.8, 2.8, and 1.8 hectares per animal unit), ungrazed control sites, and sites under a late-season rest rotation grazing system at this same range of stocking densities. Plant communities were sampled twice each season using a nearest-point procedure. Native plant species diversity, species richness, and growth form diversity were significantly higher in grazed compared to ungrazed prairie, and diversity was greatest at the highest stocking density. This enhancement of plant species diversity under grazing was not a result of increased frequency of weedy/exotic species. There were no significant effects of grazing system on plant diversity, nor any significant stocking density × grazing system interactions, indicating that animal density is a key management variable influencing plant species diversity and composition in tallgrass prairie and that effects of animal density override effects of grazing systems. Increasing cattle stocking densities decreased the abundance of the dominant perennial tall grasses, and increased abundance of the C4 perennial mid-grasses. The frequency of perennial forbs was relatively stable across grazing treatments. Abundance of annual forbs varied among years and grazing treatments. In half of the years sampled, annual forbs showed the highest frequency under intermediate stocking density. Patterns of responses among plant groups suggest that some species may respond principally to direct effects of grazers and others may respond to indirect effects of grazers on competitive relationships or on the spatial patterns of fuel loads and fires. Thus, this study suggests that large grazer densities, fire, and annual climatic variability interact to influence patterns of plant community composition and diversity in tallgrass prairie. Effects of varying management such as stocking densities and grazing systems on plant species diversity and the relative abundances of different plant growth forms or functional groups may have important consequences for grassland community stability and ecosystem function.