Konza LTER Publications
Export 82 results:
Author [ Title] Type Year Filters: Author is Jesse B. Nippert [Clear All Filters]
N and P constrain C in ecosystems under climate change: role of nutrient redistribution, accumulation, and stoichiometry. Ecological Applications. 2022;32(8):e2684. doi:10.1002/eap.2684.
Patterns and ecological consequences of water uptake, redistribution, and loss in tallgrass prairie. 2016;PhD Dissertation. Available at: http://krex.k-state.edu/dspace/handle/2097/34514.
. Photosynthetic traits in C3 and C4 grassland species in mesocosm and field environments. Environmental and Experimental Botany. 2007;60:412 -420. doi:10.1016/j.envexpbot.2006.12.012.
. Physiological and anatomical trait variability of dominant C4 grasses. Acta Oecologica. 2018;93:14 - 20. doi:10.1016/j.actao.2018.10.007.
. Physiological and growth responses of switchgrass (Panicum virgatum L.) in native stands under passive air temperature manipulation. Global Change Biology-Bioenergy. 2013;5:683 -692. doi:10.1111/j.1757-1707.2012.01204.x.
. Physiological and morphological responses of grass species to drought. Department of Biology. 2017;MS Thesis. Available at: http://krex.k-state.edu/dspace/handle/2097/36188.
. Physiological drought tolerance and the structuring of tallgrass assemblages. Ecosphere. 2011;2:48 -. doi:10.1890/ES11-00023.1.
. Poor relationships between NEON Airborne Observation Platform data and field‐based vegetation traits at a mesic grassland. Ecology. 2022;103(2):e03590. doi:10.1002/ecy.v103.210.1002/ecy.3590.
Population origin and genome size do not impact Panicum virgatum (switchgrass) responses to variable precipitation. Ecosphere. 2013;4:37 -. doi:10.1890/ES12-00339.1.
. Positive feedbacks amplify rates of woody encroachment in mesic tallgrass prairie. Ecosphere. 2011;2:121 -. doi:10.1890/ES11-00212.1.
. Post-silking 15N labelling reveals an enhanced nitrogen allocation to leaves in modern maize (Zea mays) genotypes. Journal of Plant Physiology. 2022;268:153577. doi:10.1016/j.jplph.2021.153577.
. Potential ecological impacts of switchgrass (Panicum virgatum L.) biofuel cultivation in the Central Great Plains, USA. Biomass and Bioenergy. 2011;35:3415 -3421. doi:10.1016/j.biombioe.2011.04.055.
. Precipitation timing and grazer performance in a tallgrass prairie. Oikos. 2013;122:191 -198. doi:10.1111/j.1600-0706.2012.20400.x.
. Reintroducing bison results in long-running and resilient increases in grassland diversity. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES. 2022;119(36):e2210433119. doi:10.1073/pnas.2210433119.
Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences. 2011;8:3053 -3068. doi:10.5194/bg-8-3053-2011.
. Responses of switchgrass (Panicum virgatum L.) to precipitation amount and temperature. 2011;MS Thesis. Available at: http://hdl.handle.net/2097/10720.
. Root characteristics of C-4 grasses limit reliance on deep soil water in tallgrass prairie. Plant and Soil. 2012;355:385 -394. doi:10.1007/s11104-011-1112-4.
. Root traits reveal safety and efficiency differences in grasses and shrubs exposed to different fire regimes. Functional Ecology. 2022;36(2):368 - 379. doi:10.1111/fec.v36.210.1111/1365-2435.13972.
. A safety vs efficiency trade-off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation. New Phytologist. 2016;210(1):97-107. doi:http://dx.doi.org/10.1111/nph.13781.
. Save or spend? Diverging water‐use strategies of grasses and encroaching clonal shrubs. Journal of Ecology. 2024;112(4):870-885. doi:10.1111/1365-2745.14276.
. Soil water partitioning contributes to species coexistence in tallgrass prairie. Oikos. 2007;116:1017 -1029. doi:10.1111/j.0030-1299.2007.15630.x.
. Spatio-temporal differences in leaf physiology are associated with fire, not drought, in a clonally integrated shrub. . AoB PLANTS. 2021;13(4):plab037. doi:10.1093/aobpla/plab037.
. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance. Plant, Cell and Environment. 2014;37:132 -139. doi:10.1111/pce.12137.
. A study of grass structure and function in response to drought and grazing. Department of Biology. 2021;MS Thesis. Available at: https://krex.k-state.edu/dspace/handle/2097/41514.
. Tight coupling of leaf area index to canopy nitrogen and phosphorus across heterogeneous tallgrass prairie communities. Oecologia. 2016;182(3):889 - 898. doi:10.1007/s00442-016-3713-3.
. The timing of climate variability and grassland productivity. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:3401 -3405. doi:10.1111/j.1600-0706.2012.20400.x.
. Unexpected hydrologic response to ecosystem state change in tallgrass prairie. Journal of Hydrology. 2024;643:131937. doi:10.1016/j.jhydrol.2024.131937.
The unique canopy structure, leaf morphology, and physiology of Cornus drummondii. Department of Biology. 2022;MS Thesis. Available at: https://krex.k-state.edu/dspace/handle/2097/42162.
. Using root and soil traits to forecast woody encroachment dynamics in mesic grassland.; 2023. doi:10.2172/2248061.
. Variation in gene expression of Andropogon gerardii in response to altered environmental conditions associated with climate change. Journal of Ecology. 2010;98:374 -383. doi:10.1111/j.1365-2745.2009.01618.x.
Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia. 2004;140:11 -25. doi:10.1007/s00442-004-1550-2.
Woody encroachment decreases diversity across North American grasslands and savannas. Ecology. 2012;93:697 -703. doi:10.1890/11-1199.1.
.