Konza LTER Publications
Biogeochemical and community ecology responses to the wetting of non-perennial streams. Nature Water. 2024;2(9):815 - 826. doi:10.1038/s44221-024-00298-3.
Scientific collaborative within-group conduct, data-sharing, and publication agreements. BioScience. 2024:biae073. doi:10.1093/biosci/biae073.
. How low can you go? Widespread challenges in measuring low stream discharge and a path forward. Limnology and Oceanography Letters. 2023;8(6):804-811. doi:10.1002/lol2.10356.
Impacts of riparian and non-riparian woody encroachment on tallgrass prairie ecohydrology. Ecosystems. 2023;26(2):290-301. doi:10.1007/s10021-022-00756-7.
Assessing transport and retention of nitrate and other materials through the riparian zone and stream channel with simulated precipitation. Methods in Ecology and Evolution. 2022;13(3):757 - 766. doi:10.1111/mee3.v13.310.1111/2041-210X.13791.
. Prairie stream metabolism recovery varies based on antecedent hydrology across a stream network after a bank‐full flood. Limnology and Oceanography. 2022;67(9):1986-1999. doi:10.1002/lno.12182.
. Connections and feedback: Aquatic, plant, and soil microbiomes in heterogeneous and changing environments. BioScience. 2020;70(7):548 - 562. doi:10.1093/biosci/biaa046.
Does riparian fencing protect stream water quality in cattle-grazed lands?. Environmental Management. 2020;66(1):121 - 135. doi:10.1007/s00267-020-01297-2.
. Plant phylogenetic history explains in‐stream decomposition at a global scale. . Journal of Ecology. 2020;108(1):17-35. doi:10.1111/1365-2745.13262.
Using path analysis to determine interacting effects of biotic and abiotic factors on patch-scale biogeochemical rates in a prairie stream. Aquatic Sciences. 2020;82(21). doi:10.1007/s00027-020-0702-8.
. The freshwater biome gradient framework: predicting macroscale properties based on latitude, altitude, and precipitation. Ecosphere. 2019;10(7):e02786. doi:10.1002/ecs2.2786.
Freshwater ecology: concepts and environmental applications of limnology. 3rd ed. Elsevier; 2019:998. Available at: https://www.elsevier.com/books/freshwater-ecology/dodds/978-0-12-813255-5.
. How landscape heterogeneity governs stream water concentration-discharge behavior in carbonate terrains (Konza Prairie, USA). Chemical Geology. 2019;527(20):118989. doi:10.1016/j.chemgeo.2018.12.002.
. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIRES Water. 2019;6(5):e1373. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/wat2.1373.
. Removal of woody riparian vegetation substantially altered a stream ecosystem in an otherwise undisturbed grassland watershed. Ecosystems. 2019;22(1):64 - 76. doi:10.1007/s10021-018-0252-2.
. Continental-scale decrease in net primary productivity in streams due to climate warming. Nature Geoscience. 2018;11(6):415 - 420. doi:10.1038/s41561-018-0125-5.
Dissolved organic carbon dynamics in tallgrass prairie streams. 2018;MS Thesis. Available at: http://krex.k-state.edu/dspace/handle/2097/39153.
. Partitioning assimilatory nitrogen uptake in streams: an analysis of stable isotope tracer additions across continents. Ecological Monographs. 2018;88(1):138. doi:10.1002/ecm.1280.
Top - down effects of a grazing, omnivorous minnow (Campostoma anomalum) on stream microbial communities. Freshwater Science. 2018;37(1):121-133. doi:10.1086/696292.
. Drivers of nitrogen transfer in stream food webs across continents. Ecology. 2017;98(12):3055. doi:10.1002/ecy.2009.
Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology. 2017;23(8):3064-3075. doi:10.1111/gcb.13609.
Probing whole-stream metabolism: influence of spatial heterogeneity on rate estimates. Freshwater Biology. 2017;62(4):711 - 723. doi:10.1111/fwb.12896.
. Baseflow physical characteristics differ at multiple spatial scales in stream networks across diverse biomes. Landscape Ecology. 2016;31(1):119-136. doi:10.1007/s10980-015-0289-y.
A before-and-after assessment of patch-burn grazing and riparian fencing along headwater streams. Journal of Applied Ecology. 2016;53(5):1543–1553. doi:10.1111/1365-2664.12692.
. Characterizing organic matter inputs to sediments of small, intermittent, prairie streams: a molecular marker and stable isotope approach. Aquatic Sciences. 2016;78(2):343 - 354. doi:10.1007/s00027-015-0435-2.
. Increasing fish taxonomic and functional richness affects ecosystem properties of small headwater prairie streams. Freshwater Biology. 2016;61(6):887–898. doi:10.1111/fwb.12752.
. Methods of approximation influence aquatic ecosystem metabolism estimates. Limnology and Oceanography: Methods. 2016;14(9):557 - 569. doi:10.1002/lom3.10112.
. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters. 2016;6(2):155 - 164. doi:10.5268/IW-6.2.909.
. Spatial and successional dynamics of microbial biofilm communities in a grassland stream ecosystem. Molecular Ecology. 2016;25(18):4674 - 4688. doi:10.1111/mec.13784.
. Dissolved organic carbon concentration and flux in a grassland stream: spatial and temporal patterns and processes from long-term data. Biogeochemistry. 2015;125(3):393 - 408. doi:10.1007/s10533-015-0134-z.
. Dynamics of microbial community structure and function in a tallgrass prairie ecosystem. 2015;PhD. Dissertation. Available at: http://krex.k-state.edu/dspace/bitstream/handle/2097/19145/AllisonVeach2015.pdf?sequence=1&isAllowed=y.
. Fundamental spatial and temporal disconnections in the hydrology of an intermittent prairie headwater network. Journal of Hydrology. 2015;522:305 - 316. doi:10.1016/j.jhydrol.2014.12.031.
. Long-term changes in structure and function of a tropical headwater stream following a disease-driven amphibian decline. Freshwater Biology. 2015;60(3):575 - 589. doi:10.1111/fwb.12505.
Patch-burn grazing effects on the ecological integrity of tallgrass prairie streams. Journal of Environment Quality. 2015;44(4):1148. doi:10.2134/jeq2014.10.0437.
. Quantifying ambient nitrogen uptake and functional relationships of uptake versus concentration in streams: a comparison of stable isotope, pulse, and plateau approaches. Biogeochemistry. 2015;125(1):65 - 79. doi:10.1007/s10533-015-0112-5.
The Stream Biome Gradient Concept: factors controlling lotic systems across broad biogeographic scales. Freshwater Science. 2015;34:1 -19. doi:10.1086/679756.
. Woody plant encroachment, and its removal, impact bacterial and fungal communities across stream and terrestrial habitats in a tallgrass prairie ecosystem. FEMS Microbiology Ecology. 2015;91(10):fiv109. doi:10.1093/femsec/fiv109.
. Fire and grazing influences on rates of riparian woody plant expansion along grassland streams. PLOS ONE. 2014;9:e106922. doi:10.1371/journal.pone.0106922.
. The influence of fire and grazing on tallgrass prairie streams and herpetofauna. 2014;PhD. Dissertation. Available at: http://krex.k-state.edu/dspace/bitstream/handle/2097/17560/DanelleLarson2014.pdf?sequence=7&isAllowed=y.
. You are not always what we think you eat: selective assimilation across multiple whole-stream isotopic tracer studies. Ecology. 2014;95:2757 -2767. doi:10.1890/13-2276.1.
Blazing and grazing: influences of fire and bison on tallgrass prairie stream water quality. Freshwater Science. 2013;32:779 -791. doi:10.1899/12-118.1.
. Dissolved black carbon in grassland streams: is there an effect of recent fire history?. Chemosphere. 2013;90:2557 -2562. doi:10.1016/j.chemosphere.2012.10.098.
. Ecosystem characteristics of remnant, headwater tallgrass prairie streams. Journal of Environmental Quality. 2013;42:239 -249. doi:10.2134/jeq2012.0226.
. Woody vegetation removal stimulates riparian and benthic denitrification in tallgrass prairie. Ecosystems. 2013;16:547 -560. doi:10.1007/s10021-012-9630-3.
. Dissolved organic matter in headwater streams: compositional variability across climatic regions of North America. Geochimica et Cosmochimica Acta. 2012;94:95 -108. doi:10.1016/j.gca.2012.06.031.
The expansion of woody riparian vegetation, and subsequent stream restoration, influences the metabolism of prairie streams. Freshwater Biology. 2012;57:1138 -1150. doi:10.1111/j.1365-2427.2012.02778.x.
. Surprises and insights from long-term aquatic datasets and experiments. BioScience. 2012;62:709 -721. doi:10.1525/bio.2012.62.8.4.
Cross-stream comparison of substrate-specific denitrification potential. Biogeochemistry. 2011;104:381 -392. doi:10.1007/s10533-010-9512-8.
Direct and indirect effects of central stoneroller (Campostoma anomalum) on mesocosm recovery following a flood: can macroconsumers affect denitrification?. Journal of the North American Benthological Society. 2011;30:840 -852. doi:10.1899/10-169.1.
. Dynamic influences of nutrients and grazing fish on periphyton during recovery from flood. Journal of the North American Benthological Society. 2011;30:331 -345. doi:10.1899/10-039.1.
.